Documentation

Mathlib.AlgebraicGeometry.IdealSheaf.Functorial

Functorial constructions of ideal sheaves #

We define the pullback and pushforward of ideal sheaves in this file.

Main definitions #

The pullback of an ideal sheaf.

Equations
    Instances For

      The subscheme associated to the pullback ideal sheaf is isomorphic to the fibred product.

      Equations
        Instances For

          The pushforward of an ideal sheaf.

          Equations
            Instances For
              theorem AlgebraicGeometry.Scheme.IdealSheafData.map_gc {X Y : Scheme} (f : X Y) :
              GaloisConnection (fun (x : Y.IdealSheafData) => x.comap f) fun (x : X.IdealSheafData) => x.map f

              Pushforward and pullback of ideal sheaves forms a galois connection.

              @[simp]
              theorem AlgebraicGeometry.Scheme.IdealSheafData.map_inf {X Y : Scheme} (I₁ I₂ : X.IdealSheafData) (f : X Y) :
              (I₁I₂).map f = I₁.map fI₂.map f
              @[simp]
              theorem AlgebraicGeometry.Scheme.IdealSheafData.comap_sup {X Y : Scheme} (J₁ J₂ : Y.IdealSheafData) (f : X Y) :
              (J₁J₂).comap f = J₁.comap fJ₂.comap f

              If J ≤ I.map f, then f restricts to a map I ⟶ J between the closed subschemes.

              Equations
                Instances For