Documentation

Mathlib.AlgebraicGeometry.Sites.Representability

Representability of schemes is a local property #

In this file we prove that a sheaf of types F on Sch is representable if it is locally representable.

Main result #

References #

noncomputable def AlgebraicGeometry.Scheme.LocalRepresentability.glueData {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) :

We get a family of gluing data by taking U i = X i and V i j = (hf i).rep.pullback (f j).

Equations
    Instances For
      @[simp]
      theorem AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) (i j : ι) :
      (glueData hf).t i j = .symmetry
      @[simp]
      theorem AlgebraicGeometry.Scheme.LocalRepresentability.glueData_J {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) :
      (glueData hf).J = ι
      @[simp]
      theorem AlgebraicGeometry.Scheme.LocalRepresentability.glueData_V {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) (x✝ : ι × ι) :
      (glueData hf).V x✝ = match x✝ with | (i, j) => .pullback (f j)
      @[simp]
      theorem AlgebraicGeometry.Scheme.LocalRepresentability.glueData_U {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) (a✝ : ι) :
      (glueData hf).U a✝ = X a✝
      @[simp]
      theorem AlgebraicGeometry.Scheme.LocalRepresentability.glueData_f {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) (i j : ι) :
      (glueData hf).f i j = .fst' (f j)
      noncomputable def AlgebraicGeometry.Scheme.LocalRepresentability.toGlued {F : CategoryTheory.Sheaf zariskiTopology (Type u)} {ι : Type u} {X : ιScheme} {f : (i : ι) → CategoryTheory.yoneda.obj (X i) F.val} (hf : ∀ (i : ι), IsOpenImmersion.presheaf (f i)) (i : ι) :
      X i (glueData hf).glued

      The map from X i to the glued scheme (glueData hf).glued

      Equations
        Instances For

          The map from the glued scheme (glueData hf).glued, treated as a sheaf, to F.

          Equations
            Instances For
              @[simp]

              The isomorphism between yoneda.obj (glueData hf).glued and F.

              This implies that F is representable.

              Equations
                Instances For

                  Suppose

                  • F is a Type u-valued sheaf on Sch with respect to the Zariski topology
                  • X : ι → Sch is a family of schemes
                  • f : Π i, yoneda.obj (X i) ⟶ F is a family of relatively representable open immersions
                  • f is jointly surjective

                  Then F is representable, and the representing object is glued from the X is

                  Equations
                    Instances For

                      Suppose

                      • F is a Type u-valued sheaf on Sch with respect to the Zariski topology
                      • X : ι → Sch is a family of schemes
                      • f : Π i, yoneda.obj (X i) ⟶ F is a family of relatively representable open immersions
                      • f is jointly surjective

                      Then F is representable.

                      Stacks Tag 01JJ