Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.Iso

The pullback of an isomorphism #

This file provides some basic results about the pullback (and pushout) of an isomorphism.

def CategoryTheory.Limits.pullbackConeOfLeftIso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso f] :

If f : X ⟶ Z is iso, then X ×[Z] Y ≅ Y. This is the explicit limit cone.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Limits.pullbackConeOfLeftIso_x {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso f] :
      @[simp]

      Verify that the constructed limit cone is indeed a limit.

      Equations
        Instances For
          theorem CategoryTheory.Limits.hasPullback_of_left_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso f] :
          instance CategoryTheory.Limits.pullback_snd_iso_of_left_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso f] :
          def CategoryTheory.Limits.pullbackConeOfRightIso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso g] :

          If g : Y ⟶ Z is iso, then X ×[Z] Y ≅ X. This is the explicit limit cone.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Limits.pullbackConeOfRightIso_x {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso g] :

              Verify that the constructed limit cone is indeed a limit.

              Equations
                Instances For
                  theorem CategoryTheory.Limits.hasPullback_of_right_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso g] :
                  instance CategoryTheory.Limits.pullback_fst_iso_of_right_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso g] :
                  def CategoryTheory.Limits.pushoutCoconeOfLeftIso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso f] :

                  If f : X ⟶ Y is iso, then Y ⨿[X] Z ≅ Z. This is the explicit colimit cocone.

                  Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Limits.pushoutCoconeOfLeftIso_x {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso f] :

                      Verify that the constructed cocone is indeed a colimit.

                      Equations
                        Instances For
                          theorem CategoryTheory.Limits.hasPushout_of_left_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso f] :
                          instance CategoryTheory.Limits.pushout_inr_iso_of_left_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso f] :
                          def CategoryTheory.Limits.pushoutCoconeOfRightIso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso g] :

                          If f : X ⟶ Z is iso, then Y ⨿[X] Z ≅ Y. This is the explicit colimit cocone.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Limits.pushoutCoconeOfRightIso_x {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso g] :

                              Verify that the constructed cocone is indeed a colimit.

                              Equations
                                Instances For
                                  theorem CategoryTheory.Limits.hasPushout_of_right_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso g] :
                                  instance CategoryTheory.Limits.pushout_inl_iso_of_right_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso g] :