Documentation

Mathlib.AlgebraicGeometry.Stalk

Stalks of a Scheme #

Main definitions and results #

noncomputable def AlgebraicGeometry.IsAffineOpen.fromSpecStalk {X : Scheme} {U : X.Opens} (hU : IsAffineOpen U) {x : X} (hxU : x U) :

A morphism from Spec(O_x) to X, which is defined with the help of an affine open neighborhood U of x.

Equations
    Instances For
      theorem AlgebraicGeometry.IsAffineOpen.fromSpecStalk_eq {X : Scheme} {U V : X.Opens} (hU : IsAffineOpen U) (hV : IsAffineOpen V) (x : X) (hxU : x U) (hxV : x V) :

      The morphism from Spec(O_x) to X given by IsAffineOpen.fromSpec does not depend on the affine open neighborhood of x we choose.

      noncomputable def AlgebraicGeometry.Scheme.fromSpecStalk (X : Scheme) (x : X) :

      If x is a point of X, this is the canonical morphism from Spec(O_x) to X.

      Equations
        Instances For
          noncomputable instance AlgebraicGeometry.instOverSpecStalkCommRingCatPresheaf (X : Scheme) (x : X) :
          Equations
            @[simp]
            theorem AlgebraicGeometry.over_def (X : Scheme) (x : X) :
            @[simp]

            A variant of Spec_fromSpecStalk that breaks abstraction boundaries.

            noncomputable def AlgebraicGeometry.Scheme.Opens.fromSpecStalkOfMem {X : Scheme} (U : X.Opens) (x : X) (hxU : x U) :
            Spec (X.presheaf.stalk x) U

            The canonical map Spec 𝒪_{X, x} ⟶ U given x ∈ U ⊆ X.

            Equations
              Instances For

                For a local ring (R, 𝔪), this is the isomorphism between the stalk of Spec R at 𝔪 and R.

                Equations
                  Instances For

                    Given a local ring (R, 𝔪) and a morphism f : Spec R ⟶ X, they induce a (local) ring homomorphism φ : 𝒪_{X, f 𝔪} ⟶ R.

                    This is inverse to φ ↦ Spec.map φ ≫ X.fromSpecStalk (f 𝔪). See SpecToEquivOfLocalRing.

                    Equations
                      Instances For

                        Copy of isLocalHom_stalkClosedPointTo which unbundles the comm ring.

                        Useful for use in combination with CommRingCat.of K for a field K.

                        theorem AlgebraicGeometry.SpecToEquivOfLocalRing_eq_iff {X : Scheme} {R : CommRingCat} {f₁ f₂ : (x : X) × { f : X.presheaf.stalk x R // IsLocalHom (CommRingCat.Hom.hom f) }} :
                        f₁ = f₂ ∃ (h₁ : f₁.fst = f₂.fst), f₁.snd = CategoryTheory.CategoryStruct.comp (X.presheaf.stalkCongr ).hom f₂.snd

                        useful lemma for applications of SpecToEquivOfLocalRing

                        Given a local ring R and scheme X, morphisms Spec R ⟶ X corresponds to pairs (x, f) where x : X and f : 𝒪_{X, x} ⟶ R is a local ring homomorphism.

                        Equations
                          Instances For