Documentation

Mathlib.Analysis.BoxIntegral.Partition.Measure

Box-additive functions defined by measures #

In this file we prove a few simple facts about rectangular boxes, partitions, and measures:

For the last statement, we both prove it as a proposition and define a bundled BoxIntegral.BoxAdditiveMap function.

Tags #

rectangular box, measure

If μ is a locally finite measure on ℝⁿ, then fun J ↦ μ.real J is a box-additive function.

Equations
    Instances For
      @[simp]
      theorem BoxIntegral.Box.volume_apply {ι : Type u_1} [Fintype ι] (I : Box ι) :
      @[simp]
      theorem BoxIntegral.Box.volume_apply' {ι : Type u_1} [Fintype ι] (I : Box ι) :
      (MeasureTheory.volume I).toReal = i : ι, (I.upper i - I.lower i)
      theorem BoxIntegral.Box.volume_face_mul {n : } (i : Fin (n + 1)) (I : Box (Fin (n + 1))) :
      (∏ j : Fin n, ((I.face i).upper j - (I.face i).lower j)) * (I.upper i - I.lower i) = j : Fin (n + 1), (I.upper j - I.lower j)

      Box-additive map sending each box I to the continuous linear endomorphism x ↦ (volume I).toReal • x.

      Equations
        Instances For
          theorem BoxIntegral.BoxAdditiveMap.volume_apply {ι : Type u_1} [Fintype ι] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] (I : Box ι) (x : E) :
          (BoxAdditiveMap.volume I) x = (∏ j : ι, (I.upper j - I.lower j)) x