Documentation

Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Instances

Instances of the continuous functional calculus #

Main theorems #

Tags #

continuous functional calculus, normal, selfadjoint

Pull back a non-unital instance from a unital one on the unitization #

noncomputable def cfcₙAux {𝕜 : Type u_1} {A : Type u_2} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [StarModule 𝕜 A] {p : AProp} {p₁ : Unitization 𝕜 AProp} (hp₁ : ∀ {x : A}, p₁ x p x) (a : A) (ha : p a) [ContinuousFunctionalCalculus 𝕜 (Unitization 𝕜 A) p₁] :

This is an auxiliary definition used for constructing an instance of the non-unital continuous functional calculus given a instance of the unital one on the unitization.

This is the natural non-unital star homomorphism obtained from the chain

calc
  C(σₙ 𝕜 a, 𝕜)₀ →⋆ₙₐ[𝕜] C(σₙ 𝕜 a, 𝕜) := ContinuousMapZero.toContinuousMapHom
  _             ≃⋆[𝕜] C(σ 𝕜 (↑a : A⁺¹), 𝕜) := Homeomorph.compStarAlgEquiv'
  _             →⋆ₐ[𝕜] A⁺¹ := cfcHom

This range of this map is contained in the range of (↑) : A → A⁺¹ (see cfcₙAux_mem_range_inr), and so we may restrict it to A to get the necessary homomorphism for the non-unital continuous functional calculus.

Equations
    Instances For
      theorem cfcₙAux_id {𝕜 : Type u_1} {A : Type u_2} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [StarModule 𝕜 A] {p : AProp} {p₁ : Unitization 𝕜 AProp} (hp₁ : ∀ {x : A}, p₁ x p x) (a : A) (ha : p a) [ContinuousFunctionalCalculus 𝕜 (Unitization 𝕜 A) p₁] :
      (cfcₙAux a ha) (ContinuousMapZero.id ) = a
      theorem isClosedEmbedding_cfcₙAux {𝕜 : Type u_1} {A : Type u_2} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [StarModule 𝕜 A] {p : AProp} {p₁ : Unitization 𝕜 AProp} (hp₁ : ∀ {x : A}, p₁ x p x) (a : A) (ha : p a) [ContinuousFunctionalCalculus 𝕜 (Unitization 𝕜 A) p₁] :
      theorem spec_cfcₙAux {𝕜 : Type u_1} {A : Type u_2} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [StarModule 𝕜 A] {p : AProp} {p₁ : Unitization 𝕜 AProp} (hp₁ : ∀ {x : A}, p₁ x p x) (a : A) (ha : p a) [ContinuousFunctionalCalculus 𝕜 (Unitization 𝕜 A) p₁] (f : ContinuousMapZero (↑(quasispectrum 𝕜 a)) 𝕜) :
      spectrum 𝕜 ((cfcₙAux a ha) f) = Set.range f
      theorem cfcₙAux_mem_range_inr {𝕜 : Type u_1} {A : Type u_2} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [StarModule 𝕜 A] {p : AProp} {p₁ : Unitization 𝕜 AProp} (hp₁ : ∀ {x : A}, p₁ x p x) (a : A) (ha : p a) [ContinuousFunctionalCalculus 𝕜 (Unitization 𝕜 A) p₁] [CompleteSpace A] (f : ContinuousMapZero (↑(quasispectrum 𝕜 a)) 𝕜) :
      theorem RCLike.nonUnitalContinuousFunctionalCalculus {𝕜 : Type u_1} {A : Type u_2} [RCLike 𝕜] [NonUnitalNormedRing A] [StarRing A] [NormedSpace 𝕜 A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [StarModule 𝕜 A] {p : AProp} {p₁ : Unitization 𝕜 AProp} (hp₁ : ∀ {x : A}, p₁ x p x) [ContinuousFunctionalCalculus 𝕜 (Unitization 𝕜 A) p₁] [CompleteSpace A] [CStarRing A] :

      Continuous functional calculus for selfadjoint elements #

      An element in a non-unital C⋆-algebra is selfadjoint if and only if it is normal and its quasispectrum is contained in .

      Alias of the forward direction of isSelfAdjoint_iff_isStarNormal_and_quasispectrumRestricts.


      An element in a non-unital C⋆-algebra is selfadjoint if and only if it is normal and its quasispectrum is contained in .

      A normal element whose -quasispectrum is contained in is selfadjoint.

      An element in a C⋆-algebra is selfadjoint if and only if it is normal and its spectrum is contained in .

      A normal element whose -spectrum is contained in is selfadjoint.

      Continuous functional calculus for nonnegative elements #

      theorem NNReal.spectrum_nonempty {A : Type u_2} [Ring A] [StarRing A] [LE A] [TopologicalSpace A] [Algebra NNReal A] [ContinuousFunctionalCalculus NNReal A fun (x : A) => 0 x] [Nontrivial A] {a : A} (ha : 0 a) :

      The restriction of a continuous functional calculus is equal to the original one #

      theorem cfc_real_eq_complex {A : Type u_1} [TopologicalSpace A] [Ring A] [StarRing A] [Algebra A] [ContinuousFunctionalCalculus A IsStarNormal] [T2Space A] {a : A} (f : ) (ha : IsSelfAdjoint a := by cfc_tac) :
      cfc f a = cfc (fun (x : ) => (f x.re)) a
      theorem cfcₙ_real_eq_complex {A : Type u_1} [TopologicalSpace A] [NonUnitalRing A] [StarRing A] [Module A] [IsScalarTower A A] [SMulCommClass A A] [T2Space A] [NonUnitalContinuousFunctionalCalculus A IsStarNormal] {a : A} (f : ) (ha : IsSelfAdjoint a := by cfc_tac) :
      cfcₙ f a = cfcₙ (fun (x : ) => (f x.re)) a
      theorem cfc_nnreal_eq_real {A : Type u_1} [TopologicalSpace A] [Ring A] [PartialOrder A] [StarRing A] [StarOrderedRing A] [Algebra A] [IsTopologicalRing A] [T2Space A] [ContinuousFunctionalCalculus A IsSelfAdjoint] [NonnegSpectrumClass A] {a : A} (f : NNRealNNReal) (ha : 0 a := by cfc_tac) :
      cfc f a = cfc (fun (x : ) => (f x.toNNReal)) a