Documentation

Mathlib.Analysis.Complex.UpperHalfPlane.Basic

The upper half plane #

This file defines UpperHalfPlane to be the upper half plane in .

We define the notation for the upper half plane available in the locale UpperHalfPlane so as not to conflict with the quaternions.

The open upper half plane, denoted as within the UpperHalfPlane namespace

Equations
    Instances For

      The open upper half plane, denoted as within the UpperHalfPlane namespace

      Equations
        Instances For

          Canonical embedding of the upper half-plane into .

          Equations
            Instances For
              theorem UpperHalfPlane.ext {a b : UpperHalfPlane} (h : a = b) :
              a = b
              theorem UpperHalfPlane.ext_iff {a b : UpperHalfPlane} :
              a = b a = b
              @[simp]
              theorem UpperHalfPlane.ext_iff' {a b : UpperHalfPlane} :
              a = b a = b

              Imaginary part

              Equations
                Instances For

                  Real part

                  Equations
                    Instances For
                      theorem UpperHalfPlane.ext' {a b : UpperHalfPlane} (hre : a.re = b.re) (him : a.im = b.im) :
                      a = b

                      Extensionality lemma in terms of UpperHalfPlane.re and UpperHalfPlane.im.

                      def UpperHalfPlane.mk (z : ) (h : 0 < z.im) :

                      Constructor for UpperHalfPlane. It is useful if ⟨z, h⟩ makes Lean use a wrong typeclass instance.

                      Equations
                        Instances For
                          @[simp]
                          theorem UpperHalfPlane.coe_im (z : UpperHalfPlane) :
                          (↑z).im = z.im
                          @[simp]
                          theorem UpperHalfPlane.coe_re (z : UpperHalfPlane) :
                          (↑z).re = z.re
                          @[simp]
                          theorem UpperHalfPlane.mk_re (z : ) (h : 0 < z.im) :
                          (mk z h).re = z.re
                          @[simp]
                          theorem UpperHalfPlane.mk_im (z : ) (h : 0 < z.im) :
                          (mk z h).im = z.im
                          @[simp]
                          theorem UpperHalfPlane.coe_mk (z : ) (h : 0 < z.im) :
                          (mk z h) = z
                          @[simp]
                          theorem UpperHalfPlane.coe_mk_subtype {z : } (hz : 0 < z.im) :
                          z, hz = z
                          @[simp]
                          theorem UpperHalfPlane.mk_coe (z : UpperHalfPlane) (h : 0 < (↑z).im := ) :
                          mk (↑z) h = z

                          Define I := √-1 as an element on the upper half plane.

                          Equations
                            Instances For
                              @[simp]
                              @[simp]
                              theorem UpperHalfPlane.ne_nat (z : UpperHalfPlane) (n : ) :
                              z n
                              theorem UpperHalfPlane.ne_int (z : UpperHalfPlane) (n : ) :
                              z n
                              @[simp]
                              theorem UpperHalfPlane.coe_pos_real_smul (x : { x : // 0 < x }) (z : UpperHalfPlane) :
                              ↑(x z) = x z
                              @[simp]
                              theorem UpperHalfPlane.pos_real_im (x : { x : // 0 < x }) (z : UpperHalfPlane) :
                              (x z).im = x * z.im
                              @[simp]
                              theorem UpperHalfPlane.pos_real_re (x : { x : // 0 < x }) (z : UpperHalfPlane) :
                              (x z).re = x * z.re
                              @[simp]
                              theorem UpperHalfPlane.coe_vadd (x : ) (z : UpperHalfPlane) :
                              ↑(x +ᵥ z) = x + z
                              @[simp]
                              theorem UpperHalfPlane.vadd_re (x : ) (z : UpperHalfPlane) :
                              (x +ᵥ z).re = x + z.re
                              @[simp]
                              theorem UpperHalfPlane.vadd_im (x : ) (z : UpperHalfPlane) :
                              (x +ᵥ z).im = z.im