Documentation

Mathlib.Analysis.Complex.UpperHalfPlane.Topology

Topology on the upper half plane #

In this file we introduce a TopologicalSpace structure on the upper half plane and provide various instances.

Each element of GL(2, ℝ) defines a continuous map ℍ → ℍ.

The vertical strip of width A and height B, defined by elements whose real part has absolute value less than or equal to A and imaginary part is at least B.

Equations
    Instances For
      theorem UpperHalfPlane.verticalStrip_mono {A B A' B' : } (hA : A A') (hB : B' B) :

      A section ℂ → ℍ of the natural inclusion map, bundled as a PartialHomeomorph.

      Equations
        Instances For

          Extend a function on arbitrarily to a function on all of .

          Equations
            Instances For
              theorem UpperHalfPlane.ofComplex_apply_eq_ite (w : ) :
              ofComplex w = if hw : 0 < w.im then w, hw else Classical.choice
              theorem UpperHalfPlane.ofComplex_apply_eq_of_im_nonpos {w w' : } (hw : w.im 0) (hw' : w'.im 0) :
              ofComplex w = ofComplex w'
              theorem UpperHalfPlane.comp_ofComplex_of_im_pos (f : UpperHalfPlane) (z : ) (hz : 0 < z.im) :
              (f ofComplex) z = f z, hz
              theorem UpperHalfPlane.comp_ofComplex_of_im_le_zero (f : UpperHalfPlane) (z z' : ) (hz : z.im 0) (hz' : z'.im 0) :
              (f ofComplex) z = (f ofComplex) z'