Documentation

Mathlib.Analysis.Normed.Ring.WithAbs

WithAbs #

WithAbs v is a type synonym for a semiring R which depends on an absolute value. The point of this is to allow the type class inference system to handle multiple sources of instances that arise from absolute values.

Main definitions #

def WithAbs {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] [Semiring R] :
AbsoluteValue R SType u_1

Type synonym for a semiring which depends on an absolute value. This is a function that takes an absolute value on a semiring and returns the semiring. We use this to assign and infer instances on a semiring that depend on absolute values.

This is also helpful when dealing with several absolute values on the same semiring.

Equations
    Instances For
      instance WithAbs.instUnique {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] [Semiring R] (v : AbsoluteValue R S) [Unique R] :
      Equations
        instance WithAbs.instSemiring {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] [Semiring R] (v : AbsoluteValue R S) :
        Equations
          instance WithAbs.instInhabited {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] [Semiring R] (v : AbsoluteValue R S) :
          Equations
            def WithAbs.equiv {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] [Semiring R] (v : AbsoluteValue R S) :

            The canonical (semiring) equivalence between WithAbs v and R.

            Equations
              Instances For
                instance WithAbs.instCommSemiring {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] [CommSemiring R] (v : AbsoluteValue R S) :
                Equations
                  instance WithAbs.instRing {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] [Ring R] (v : AbsoluteValue R S) :
                  Equations
                    instance WithAbs.instCommRing {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] [CommRing R] (v : AbsoluteValue R S) :
                    Equations
                      instance WithAbs.normedRing {R : Type u_1} [Ring R] (v : AbsoluteValue R ) :
                      Equations
                        theorem WithAbs.norm_eq_abv {R : Type u_1} [Ring R] (v : AbsoluteValue R ) (x : WithAbs v) :
                        x = v ((equiv v) x)
                        instance WithAbs.instModule_left {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] {R' : Type u_3} [Semiring R] [AddCommGroup R'] [Module R R'] (v : AbsoluteValue R S) :
                        Equations
                          instance WithAbs.instModule_right {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] {R' : Type u_3} [Semiring R] [Semiring R'] [Module R R'] (v : AbsoluteValue R' S) :
                          Equations
                            instance WithAbs.instAlgebra_left {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] {R' : Type u_3} [CommSemiring R] [Semiring R'] [Algebra R R'] (v : AbsoluteValue R S) :
                            Equations
                              instance WithAbs.instAlgebra_right {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] {R' : Type u_3} [CommSemiring R] [Semiring R'] [Algebra R R'] (v : AbsoluteValue R' S) :
                              Equations
                                def WithAbs.algEquiv {R : Type u_1} {S : Type u_2} [Semiring S] [PartialOrder S] {R' : Type u_3} [CommSemiring R] [Semiring R'] [Algebra R R'] (v : AbsoluteValue R' S) :

                                The canonical algebra isomorphism from an R-algebra R' with an absolute value v to R'.

                                Equations
                                  Instances For