Documentation

Mathlib.Analysis.Normed.Unbundled.SpectralNorm

The spectral norm and the norm extension theorem #

This file shows that if K is a nonarchimedean normed field and L/K is an algebraic extension, then there is a natural extension of the norm on K to a K-algebra norm on L, the so-called spectral norm. The spectral norm of an element of L only depends on its minimal polynomial over K, so for K ⊆ L ⊆ M are two extensions of K, the spectral norm on M restricts to the spectral norm on L. This work can be used to uniquely extend the p-adic norm on ℚ_[p] to an algebraic closure of ℚ_[p], for example.

Details #

We define the spectral value and the spectral norm. We prove the norm extension theorem [S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis (Theorem 3.2.1/2)] [bosch-guntzer-remmert] : given a nonarchimedean normed field K and an algebraic extension L/K, the spectral norm is a power-multiplicative K-algebra norm on L extending the norm on K. All K-algebra automorphisms of L are isometries with respect to this norm. If L/K is finite, we get a formula relating the spectral norm on L with any other power-multiplicative norm on L extending the norm on K.

Moreover, we also prove the unique norm extension theorem: if K is a field complete with respect to a nontrivial nonarchimedean multiplicative norm and L/K is an algebraic extension, then the spectral norm on L is a nonarchimedean multiplicative norm, and any power-multiplicative K-algebra norm on L coincides with the spectral norm. More over, if L/K is finite, then L is a complete space. This result is [S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis (Theorem 3.2.4/2)][bosch-guntzer-remmert].

As a prerequisite, we formalize the proof of [S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis (Proposition 3.1.2/1)][bosch-guntzer-remmert].

Main Definitions #

Main Results #

References #

Tags #

spectral, spectral norm, spectral value, seminorm, norm, nonarchimedean

def spectralValueTerms {R : Type u_1} [SeminormedRing R] (p : Polynomial R) :

The function ℕ → ℝ sending n to ‖ p.coeff n ‖^(1/(p.natDegree - n : ℝ)), if n < p.natDegree, or to 0 otherwise.

Equations
    Instances For
      theorem spectralValueTerms_of_lt_natDegree {R : Type u_1} [SeminormedRing R] (p : Polynomial R) {n : } (hn : n < p.natDegree) :
      spectralValueTerms p n = p.coeff n ^ (1 / (p.natDegree - n))
      def spectralValue {R : Type u_1} [SeminormedRing R] (p : Polynomial R) :

      The spectral value of a polynomial in R[X], where R is a seminormed ring. One motivation for the spectral value: if the norm on R is nonarchimedean, and if a monic polynomial splits into linear factors, then its spectral value is the norm of its largest root. See max_norm_root_eq_spectralValue.

      Equations
        Instances For

          The range of spectralValue_terms p is a finite set.

          The sequence spectralValue_terms p is bounded above.

          The sequence spectralValue_terms p is nonnegative.

          The spectral value of a polyomial is nonnegative.

          The polynomial X - r has spectral value ‖ r ‖.

          The polynomial X ^ n has spectral value 0.

          The spectral value of p equals zero if and only if p is of the form X ^ n.

          theorem norm_root_le_spectralValue {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] {f : AlgebraNorm K L} (hf_pm : IsPowMul f) (hf_na : IsNonarchimedean f) {p : Polynomial K} (hp : p.Monic) {x : L} (hx : (Polynomial.aeval x) p = 0) :

          The norm of any root of p is bounded by the spectral value of p. See [S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis (Proposition 3.1.2/1(1))] [bosch-guntzer-remmert].

          theorem max_norm_root_eq_spectralValue {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] [DecidableEq L] {f : AlgebraNorm K L} (hf_pm : IsPowMul f) (hf_na : IsNonarchimedean f) (hf1 : f 1 = 1) (p : Polynomial K) (s : Multiset L) (hp : (Polynomial.mapAlg K L) p = (Multiset.map (fun (a : L) => Polynomial.X - Polynomial.C a) s).prod) :
          (⨆ (x : L), if x s then f x else 0) = spectralValue p

          If f is a nonarchimedean, power-multiplicative K-algebra norm on L, then the spectral value of a polynomial p : K[X] that decomposes into linear factors in L is equal to the maximum of the norms of the roots. See [S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis (Proposition 3.1.2/1(2))][bosch-guntzer-remmert].

          def spectralNorm (K : Type u_2) [NormedField K] (L : Type u_3) [Field L] [Algebra K L] (y : L) :

          If L is an algebraic extension of a normed field K and y : L then the spectral norm spectralNorm K y : ℝ of y (written |y|_sp in the textbooks) is the spectral value of the minimal polynomial of y over K.

          Equations
            Instances For
              theorem spectralNorm.eq_of_tower {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] {E : Type u_4} [Field E] [Algebra K E] [Algebra E L] [IsScalarTower K E L] (x : E) :

              If L/E/K is a tower of fields, then the spectral norm of x : E equals its spectral norm when regarding x as an element of L.

              theorem spectralNorm.eq_of_normalClosure' {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] (E : IntermediateField K L) (x : E) :

              If L/E/K is a tower of fields, then the spectral norm of x : E when regarded as an element of the normal closure of E equals its spectral norm when regarding x as an element of L.

              theorem spectralNorm.eq_of_normalClosure {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] {E : IntermediateField K L} {x : L} (g : E) (h_map : (algebraMap (↥E) L) g = x) :

              If L/E/K is a tower of fields and x = algebraMap E L g, then then the spectral norm of g : E when regarded as an element of the normal closure of E equals the spectral norm of x : L.

              theorem spectralNorm_zero {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] :
              spectralNorm K L 0 = 0

              spectralNorm K L (0 : L) = 0.

              theorem spectralNorm_nonneg {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] (y : L) :

              spectralNorm K L y is nonnegative.

              theorem spectralNorm_zero_lt {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] {y : L} (hy : y 0) (hy_alg : IsAlgebraic K y) :
              0 < spectralNorm K L y

              spectralNorm K L y is positive if y ≠ 0.

              theorem eq_zero_of_map_spectralNorm_eq_zero {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] {x : L} (hx : spectralNorm K L x = 0) (hx_alg : IsAlgebraic K x) :
              x = 0

              If spectralNorm K L x = 0, then x = 0.

              theorem norm_le_spectralNorm {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] {f : AlgebraNorm K L} (hf_pm : IsPowMul f) (hf_na : IsNonarchimedean f) {x : L} (hx_alg : IsAlgebraic K x) :
              f x spectralNorm K L x

              If f is a power-multiplicative K-algebra norm on L, then f is bounded above by spectralNorm K L.

              theorem spectralNorm_eq_of_equiv {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] (σ : L ≃ₐ[K] L) (x : L) :
              spectralNorm K L x = spectralNorm K L (σ x)

              The K-algebra automorphisms of L are isometries with respect to the spectral norm.

              theorem spectralNorm_eq_iSup_of_finiteDimensional_normal (K : Type u_2) [NormedField K] (L : Type u_3) [Field L] [Algebra K L] [h_fin : FiniteDimensional K L] [hn : Normal K L] {f : AlgebraNorm K L} (hf_pm : IsPowMul f) (hf_na : IsNonarchimedean f) (hf_ext : ∀ (x : K), f ((algebraMap K L) x) = x) (x : L) :
              spectralNorm K L x = ⨆ (σ : L ≃ₐ[K] L), f (σ x)

              If L/K is finite and normal, then spectralNorm K L x = supr (λ (σ : L ≃ₐ[K] L), f (σ x)).

              If L/K is finite and normal, then spectralNorm K L = invariantExtension K L.

              If L/K is finite and normal, then spectralNorm K L is power-multiplicative. See also the more general result isPowMul_spectralNorm.

              The spectral norm is a K-algebra norm on L when L/K is finite and normal. See also spectralAlgNorm for a more general construction.

              Equations
                Instances For

                  The spectral norm is nonarchimedean when L/K is finite and normal. See also isNonarchimedean_spectralNorm for a more general result.

                  theorem spectralNorm_extends_of_finiteDimensional (K : Type u_2) [NormedField K] (L : Type u_3) [Field L] [Algebra K L] [h_fin : FiniteDimensional K L] [hn : Normal K L] [IsUltrametricDist K] (x : K) :

                  The spectral norm extends the norm on K when L/K is finite and normal. See also spectralNorm_extends for a more general result.

                  theorem spectralNorm_unique_of_finiteDimensional_normal (K : Type u_2) [NormedField K] (L : Type u_3) [Field L] [Algebra K L] [h_fin : FiniteDimensional K L] [hn : Normal K L] {f : AlgebraNorm K L} (hf_pm : IsPowMul f) (hf_na : IsNonarchimedean f) (hf_ext : ∀ (x : K), f ((algebraMap K L) x) = x‖₊) (hf_iso : ∀ (σ : L ≃ₐ[K] L) (x : L), f x = f (σ x)) (x : L) :
                  f x = spectralNorm K L x

                  If L/K is finite and normal, and f is a power-multiplicative K-algebra norm on L extending the norm on K, then f = spectralNorm K L.

                  theorem spectralNorm_extends {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] (k : K) :

                  The spectral norm extends the norm on K.

                  theorem spectralNorm_one {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] :
                  spectralNorm K L 1 = 1
                  theorem spectralNorm_neg {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] [IsUltrametricDist K] {y : L} (hy : IsAlgebraic K y) :

                  spectralNorm K L (-y) = spectralNorm K L y .

                  theorem spectralNorm_smul {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] [IsUltrametricDist K] (k : K) {y : L} (hy : IsAlgebraic K y) :

                  The spectral norm is compatible with the action of K.

                  theorem spectralNorm_mul {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] [IsUltrametricDist K] {x y : L} (hx : IsAlgebraic K x) (hy : IsAlgebraic K y) :

                  The spectral norm is submultiplicative.

                  theorem isPowMul_spectralNorm {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] [IsUltrametricDist K] [h_alg : Algebra.IsAlgebraic K L] :

                  The spectral norm is power-multiplicative.

                  The spectral norm is nonarchimedean.

                  def spectralAlgNorm (K : Type u_2) [NormedField K] (L : Type u_3) [Field L] [Algebra K L] [IsUltrametricDist K] [h_alg : Algebra.IsAlgebraic K L] :

                  The spectral norm is a K-algebra norm on L.

                  Equations
                    Instances For
                      theorem spectralAlgNorm_def {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] [IsUltrametricDist K] [h_alg : Algebra.IsAlgebraic K L] (x : L) :
                      theorem spectralAlgNorm_extends {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] [IsUltrametricDist K] [h_alg : Algebra.IsAlgebraic K L] (k : K) :
                      theorem spectralAlgNorm_one {K : Type u_2} [NormedField K] {L : Type u_3} [Field L] [Algebra K L] [IsUltrametricDist K] [h_alg : Algebra.IsAlgebraic K L] :
                      (spectralAlgNorm K L) 1 = 1
                      theorem spectralNorm_unique {K : Type u} [NontriviallyNormedField K] {L : Type v} [Field L] [Algebra K L] [Algebra.IsAlgebraic K L] [hu : IsUltrametricDist K] [CompleteSpace K] {f : AlgebraNorm K L} (hf_pm : IsPowMul f) :

                      If K is a field complete with respect to a nontrivial nonarchimedean multiplicative norm and L/K is an algebraic extension, then any power-multiplicative K-algebra norm on L coincides with the spectral norm.

                      theorem spectralNorm_unique_field_norm_ext {K : Type u} [NontriviallyNormedField K] {L : Type v} [Field L] [Algebra K L] [Algebra.IsAlgebraic K L] [hu : IsUltrametricDist K] [CompleteSpace K] {f : AbsoluteValue L } (hf_ext : ∀ (x : K), f ((algebraMap K L) x) = x) (x : L) :
                      f x = spectralNorm K L x

                      If K is a field complete with respect to a nontrivial nonarchimedean multiplicative norm and L/K is an algebraic extension, then any multiplicative ring norm on L extending the norm on K coincides with the spectral norm.

                      def algNormFromConst {K : Type u} [NontriviallyNormedField K] {L : Type v} [Field L] [Algebra K L] [Algebra.IsAlgebraic K L] [hu : IsUltrametricDist K] (h1 : (spectralAlgNorm K L).toRingSeminorm 1 1) {x : L} (hx : x 0) :

                      Given a nonzero x : L, and assuming that (spectralAlgNorm h_alg hna) 1 ≤ 1, this is the real-valued function sending y ∈ L to the limit of (f (y * x^n))/((f x)^n), regarded as an algebra norm.

                      Equations
                        Instances For
                          theorem algNormFromConst_def {K : Type u} [NontriviallyNormedField K] {L : Type v} [Field L] [Algebra K L] [Algebra.IsAlgebraic K L] [hu : IsUltrametricDist K] (h1 : (spectralAlgNorm K L).toRingSeminorm 1 1) {x y : L} (hx : x 0) :
                          (algNormFromConst h1 hx) y = (seminormFromConst h1 ) y
                          theorem spectralAlgNorm_mul {K : Type u} [NontriviallyNormedField K] {L : Type v} [Field L] [Algebra K L] [Algebra.IsAlgebraic K L] [hu : IsUltrametricDist K] [CompleteSpace K] (x y : L) :
                          (spectralAlgNorm K L) (x * y) = (spectralAlgNorm K L) x * (spectralAlgNorm K L) y

                          If K is a field complete with respect to a nontrivial nonarchimedean multiplicative norm and L/K is an algebraic extension, then the spectral norm on L is multiplicative.

                          The spectral norm is a multiplicative K-algebra norm on L.

                          Equations
                            Instances For

                              L with the spectral norm is a NormedField.

                              Equations
                                Instances For

                                  L with the spectral norm is a normed_add_comm_group.

                                  Equations
                                    Instances For

                                      L with the spectral norm is a seminormed_add_comm_group.

                                      Equations
                                        Instances For

                                          L with the spectral norm is a normed_space over K.

                                          Equations
                                            Instances For

                                              The metric space structure on L induced by the spectral norm.

                                              Equations
                                                Instances For

                                                  The uniform space structure on L induced by the spectral norm.

                                                  Equations
                                                    Instances For
                                                      @[instance 100]

                                                      If L/K is finite dimensional, then L is a complete space with respect to topology induced by the spectral norm.