Documentation

Mathlib.FieldTheory.IntermediateField.Basic

Intermediate fields #

Let L / K be a field extension, given as an instance Algebra K L. This file defines the type of fields in between K and L, IntermediateField K L. An IntermediateField K L is a subfield of L which contains (the image of) K, i.e. it is a Subfield L and a Subalgebra K L.

Main definitions #

Implementation notes #

Intermediate fields are defined with a structure extending Subfield and Subalgebra. A Subalgebra is closed under all operations except ⁻¹,

Tags #

intermediate field, field extension

structure IntermediateField (K : Type u_1) (L : Type u_2) [Field K] [Field L] [Algebra K L] extends Subalgebra K L :
Type u_2

S : IntermediateField K L is a subset of L such that there is a field tower L / S / K.

Instances For
    instance IntermediateField.instSetLike {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] :
    Equations
      theorem IntermediateField.neg_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x S) :
      -x S
      def IntermediateField.toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :

      Reinterpret an IntermediateField as a Subfield.

      Equations
        Instances For
          theorem IntermediateField.mem_carrier {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {s : IntermediateField K L} {x : L} :
          x s.carrier x s
          theorem IntermediateField.ext {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S T : IntermediateField K L} (h : ∀ (x : L), x S x T) :
          S = T

          Two intermediate fields are equal if they have the same elements.

          theorem IntermediateField.ext_iff {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S T : IntermediateField K L} :
          S = T ∀ (x : L), x S x T
          @[simp]
          theorem IntermediateField.coe_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          S.toSubalgebra = S
          @[simp]
          theorem IntermediateField.coe_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          S.toSubfield = S
          @[simp]
          theorem IntermediateField.coe_type_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          S.toSubalgebra = S
          @[simp]
          theorem IntermediateField.coe_type_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          S.toSubfield = S
          @[simp]
          theorem IntermediateField.mem_mk {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (s : Subsemiring L) (hK : ∀ (x : K), (algebraMap K L) x s) (hi : x{ toSubsemiring := s, algebraMap_mem' := hK }.carrier, x⁻¹ { toSubsemiring := s, algebraMap_mem' := hK }.carrier) (x : L) :
          x { toSubsemiring := s, algebraMap_mem' := hK, inv_mem' := hi } x s
          @[simp]
          theorem IntermediateField.mem_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (s : IntermediateField K L) (x : L) :
          @[simp]
          theorem IntermediateField.mem_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (s : IntermediateField K L) (x : L) :
          def IntermediateField.copy {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (s : Set L) (hs : s = S) :

          Copy of an intermediate field with a new carrier equal to the old one. Useful to fix definitional equalities.

          Equations
            Instances For
              @[simp]
              theorem IntermediateField.coe_copy {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (s : Set L) (hs : s = S) :
              (S.copy s hs) = s
              theorem IntermediateField.copy_eq {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (s : Set L) (hs : s = S) :
              S.copy s hs = S

              Lemmas inherited from more general structures #

              The declarations in this section derive from the fact that an IntermediateField is also a subalgebra or subfield. Their use should be replaceable with the corresponding lemma from a subobject class.

              theorem IntermediateField.algebraMap_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : K) :
              (algebraMap K L) x S

              An intermediate field contains the image of the smaller field.

              theorem IntermediateField.smul_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {y : L} :
              y S∀ {x : K}, x y S

              An intermediate field is closed under scalar multiplication.

              theorem IntermediateField.one_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
              1 S

              An intermediate field contains the ring's 1.

              theorem IntermediateField.zero_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
              0 S

              An intermediate field contains the ring's 0.

              theorem IntermediateField.mul_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x y : L} :
              x Sy Sx * y S

              An intermediate field is closed under multiplication.

              theorem IntermediateField.add_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x y : L} :
              x Sy Sx + y S

              An intermediate field is closed under addition.

              theorem IntermediateField.sub_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x y : L} :
              x Sy Sx - y S

              An intermediate field is closed under subtraction.

              theorem IntermediateField.inv_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} :
              x Sx⁻¹ S

              An intermediate field is closed under inverses.

              theorem IntermediateField.div_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x y : L} :
              x Sy Sx / y S

              An intermediate field is closed under division.

              theorem IntermediateField.list_prod_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {l : List L} :
              (∀ xl, x S)l.prod S

              Product of a list of elements in an intermediate field is in the intermediate field.

              theorem IntermediateField.list_sum_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {l : List L} :
              (∀ xl, x S)l.sum S

              Sum of a list of elements in an intermediate field is in the intermediate field.

              theorem IntermediateField.multiset_prod_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (m : Multiset L) :
              (∀ am, a S)m.prod S

              Product of a multiset of elements in an intermediate field is in the intermediate field.

              theorem IntermediateField.multiset_sum_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (m : Multiset L) :
              (∀ am, a S)m.sum S

              Sum of a multiset of elements in an IntermediateField is in the IntermediateField.

              theorem IntermediateField.prod_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ι : Type u_4} {t : Finset ι} {f : ιL} (h : ct, f c S) :
              it, f i S

              Product of elements of an intermediate field indexed by a Finset is in the intermediate field.

              theorem IntermediateField.sum_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ι : Type u_4} {t : Finset ι} {f : ιL} (h : ct, f c S) :
              it, f i S

              Sum of elements in an IntermediateField indexed by a Finset is in the IntermediateField.

              theorem IntermediateField.pow_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x S) (n : ) :
              x ^ n S
              theorem IntermediateField.zsmul_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x S) (n : ) :
              n x S
              theorem IntermediateField.intCast_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (n : ) :
              n S
              theorem IntermediateField.coe_add {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x y : S) :
              ↑(x + y) = x + y
              theorem IntermediateField.coe_neg {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : S) :
              ↑(-x) = -x
              theorem IntermediateField.coe_mul {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x y : S) :
              ↑(x * y) = x * y
              theorem IntermediateField.coe_inv {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : S) :
              x⁻¹ = (↑x)⁻¹
              theorem IntermediateField.coe_zero {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
              0 = 0
              theorem IntermediateField.coe_one {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
              1 = 1
              theorem IntermediateField.coe_pow {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : S) (n : ) :
              ↑(x ^ n) = x ^ n
              theorem IntermediateField.natCast_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (n : ) :
              n S
              def Subalgebra.toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (inv_mem : xS, x⁻¹ S) :

              Turn a subalgebra closed under inverses into an intermediate field.

              Equations
                Instances For
                  @[simp]
                  theorem toSubalgebra_toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (inv_mem : xS, x⁻¹ S) :
                  @[simp]
                  theorem toIntermediateField_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                  def Subalgebra.toIntermediateField' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (hS : IsField S) :

                  Turn a subalgebra satisfying IsField into an intermediate field.

                  Equations
                    Instances For
                      @[simp]
                      theorem toSubalgebra_toIntermediateField' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (hS : IsField S) :
                      @[simp]
                      theorem toIntermediateField'_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                      def Subfield.toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subfield L) (algebra_map_mem : ∀ (x : K), (algebraMap K L) x S) :

                      Turn a subfield of L containing the image of K into an intermediate field.

                      Equations
                        Instances For
                          @[simp]
                          theorem Subfield.toIntermediateField_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subfield L) (algebra_map_mem : ∀ (x : K), (algebraMap K L) x S) :
                          (S.toIntermediateField algebra_map_mem).toSubfield = S
                          @[simp]
                          theorem Subfield.coe_toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subfield L) (algebra_map_mem : ∀ (x : K), (algebraMap K L) x S) :
                          (S.toIntermediateField algebra_map_mem) = S
                          instance IntermediateField.toField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                          Field S

                          An intermediate field inherits a field structure.

                          Equations
                            theorem IntermediateField.coe_sum {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ι : Type u_4} [Fintype ι] (f : ιS) :
                            (∑ i : ι, f i) = i : ι, (f i)
                            theorem IntermediateField.coe_prod {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ι : Type u_4} [Fintype ι] (f : ιS) :
                            (∏ i : ι, f i) = i : ι, (f i)

                            IntermediateFields inherit structure from their Subfield coercions.

                            instance IntermediateField.instSMulSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [SMul L X] (F : IntermediateField K L) :
                            SMul (↥F) X

                            The action by an intermediate field is the action by the underlying field.

                            Equations
                              theorem IntermediateField.smul_def {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [SMul L X] {F : IntermediateField K L} (g : F) (m : X) :
                              g m = g m
                              instance IntermediateField.smulCommClass_left {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_5} {Y : Type u_4} [SMul L Y] [SMul X Y] [SMulCommClass L X Y] (F : IntermediateField K L) :
                              SMulCommClass (↥F) X Y
                              instance IntermediateField.smulCommClass_right {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} {Y : Type u_5} [SMul X Y] [SMul L Y] [SMulCommClass X L Y] (F : IntermediateField K L) :
                              SMulCommClass X (↥F) Y
                              @[instance 900]
                              instance IntermediateField.instIsScalarTowerSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} {Y : Type u_5} [SMul X Y] [SMul L X] [SMul L Y] [IsScalarTower L X Y] (F : IntermediateField K L) :
                              IsScalarTower (↥F) X Y

                              Note that this provides IsScalarTower F K K which is needed by smul_mul_assoc.

                              instance IntermediateField.instFaithfulSMulSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [SMul L X] [FaithfulSMul L X] (F : IntermediateField K L) :
                              FaithfulSMul (↥F) X
                              instance IntermediateField.instMulActionSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [MulAction L X] (F : IntermediateField K L) :
                              MulAction (↥F) X

                              The action by an intermediate field is the action by the underlying field.

                              Equations
                                instance IntermediateField.instDistribMulActionSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [AddMonoid X] [DistribMulAction L X] (F : IntermediateField K L) :

                                The action by an intermediate field is the action by the underlying field.

                                Equations

                                  The action by an intermediate field is the action by the underlying field.

                                  Equations
                                    instance IntermediateField.instSMulWithZeroSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [Zero X] [SMulWithZero L X] (F : IntermediateField K L) :
                                    SMulWithZero (↥F) X

                                    The action by an intermediate field is the action by the underlying field.

                                    Equations
                                      instance IntermediateField.instMulActionWithZeroSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [Zero X] [MulActionWithZero L X] (F : IntermediateField K L) :

                                      The action by an intermediate field is the action by the underlying field.

                                      Equations
                                        instance IntermediateField.instModuleSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [AddCommMonoid X] [Module L X] (F : IntermediateField K L) :
                                        Module (↥F) X

                                        The action by an intermediate field is the action by the underlying field.

                                        Equations
                                          instance IntermediateField.instMulSemiringActionSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [Semiring X] [MulSemiringAction L X] (F : IntermediateField K L) :

                                          The action by an intermediate field is the action by the underlying field.

                                          Equations

                                            IntermediateFields inherit structure from their Subalgebra coercions.

                                            instance IntermediateField.toAlgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                            Algebra (↥S) L
                                            Equations
                                              instance IntermediateField.module' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [SMul R K] [Module R L] [IsScalarTower R K L] :
                                              Module R S
                                              Equations
                                                instance IntermediateField.algebra' {R' : Type u_4} {K : Type u_5} {L : Type u_6} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) [CommSemiring R'] [SMul R' K] [Algebra R' L] [IsScalarTower R' K L] :
                                                Algebra R' S
                                                Equations
                                                  instance IntermediateField.isScalarTower {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [SMul R K] [Module R L] [IsScalarTower R K L] :
                                                  IsScalarTower R K S
                                                  @[simp]
                                                  theorem IntermediateField.coe_smul {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [SMul R K] [SMul R L] [IsScalarTower R K L] (r : R) (x : S) :
                                                  ↑(r x) = r x
                                                  @[simp]
                                                  theorem IntermediateField.algebraMap_apply {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : S) :
                                                  (algebraMap (↥S) L) x = x
                                                  @[simp]
                                                  theorem IntermediateField.coe_algebraMap_apply {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : K) :
                                                  ((algebraMap K S) x) = (algebraMap K L) x
                                                  instance IntermediateField.isScalarTower_bot {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [Algebra L R] :
                                                  IsScalarTower (↥S) L R
                                                  instance IntermediateField.isScalarTower_mid {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [Algebra L R] [Algebra K R] [IsScalarTower K L R] :
                                                  IsScalarTower K (↥S) R
                                                  instance IntermediateField.isScalarTower_mid' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                  IsScalarTower K (↥S) L

                                                  Specialize isScalarTower_mid to the common case where the top field is L.

                                                  instance IntermediateField.instAlgebraSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {E : Type u_4} [Semiring E] [Algebra L E] :
                                                  Algebra (↥S) E
                                                  Equations
                                                    instance IntermediateField.instAlgebraSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (↥S) E) :
                                                    Algebra S T
                                                    Equations
                                                      instance IntermediateField.instModuleSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (↥S) E) :
                                                      Module S T
                                                      Equations
                                                        instance IntermediateField.instSMulSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (↥S) E) :
                                                        SMul S T
                                                        Equations
                                                          instance IntermediateField.instIsScalarTowerSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (↥S) E) [Algebra K E] [IsScalarTower K L E] :
                                                          IsScalarTower K S T
                                                          def IntermediateField.comap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') (S : IntermediateField K L') :

                                                          Given f : L →ₐ[K] L', S.comap f is the intermediate field between K and L such that f x ∈ S ↔ x ∈ S.comap f.

                                                          Equations
                                                            Instances For
                                                              def IntermediateField.map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') (S : IntermediateField K L) :

                                                              Given f : L →ₐ[K] L', S.map f is the intermediate field between K and L' such that x ∈ S ↔ f x ∈ S.map f.

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem IntermediateField.coe_map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L →ₐ[K] L') :
                                                                  (map f S) = f '' S
                                                                  @[simp]
                                                                  theorem IntermediateField.toSubalgebra_map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L →ₐ[K] L') :
                                                                  @[simp]
                                                                  theorem IntermediateField.toSubfield_map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L →ₐ[K] L') :
                                                                  theorem IntermediateField.map_id {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                  map (AlgHom.id K L) S = S

                                                                  Mapping intermediate fields along the identity does not change them.

                                                                  theorem IntermediateField.map_map {K : Type u_4} {L₁ : Type u_5} {L₂ : Type u_6} {L₃ : Type u_7} [Field K] [Field L₁] [Algebra K L₁] [Field L₂] [Algebra K L₂] [Field L₃] [Algebra K L₃] (E : IntermediateField K L₁) (f : L₁ →ₐ[K] L₂) (g : L₂ →ₐ[K] L₃) :
                                                                  map g (map f E) = map (g.comp f) E
                                                                  theorem IntermediateField.map_mono {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') {S T : IntermediateField K L} (h : S T) :
                                                                  map f S map f T
                                                                  theorem IntermediateField.map_le_iff_le_comap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] {f : L →ₐ[K] L'} {s : IntermediateField K L} {t : IntermediateField K L'} :
                                                                  map f s t s comap f t
                                                                  theorem IntermediateField.gc_map_comap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :
                                                                  def IntermediateField.intermediateFieldMap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L ≃ₐ[K] L') (E : IntermediateField K L) :
                                                                  E ≃ₐ[K] (map (↑e) E)

                                                                  Given an equivalence e : L ≃ₐ[K] L' of K-field extensions and an intermediate field E of L/K, intermediateFieldMap e E is the induced equivalence between E and E.map e.

                                                                  Equations
                                                                    Instances For
                                                                      theorem IntermediateField.intermediateFieldMap_apply_coe {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L ≃ₐ[K] L') (E : IntermediateField K L) (a : E) :
                                                                      ((intermediateFieldMap e E) a) = e a
                                                                      theorem IntermediateField.intermediateFieldMap_symm_apply_coe {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L ≃ₐ[K] L') (E : IntermediateField K L) (a : (map (↑e) E)) :
                                                                      ((intermediateFieldMap e E).symm a) = e.symm a
                                                                      def AlgHom.fieldRange {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :

                                                                      The range of an algebra homomorphism, as an intermediate field.

                                                                      Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem AlgHom.fieldRange_toSubalgebra {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :
                                                                          @[simp]
                                                                          theorem AlgHom.coe_fieldRange {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :
                                                                          @[simp]
                                                                          theorem AlgHom.fieldRange_toSubfield {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :
                                                                          @[simp]
                                                                          theorem AlgHom.mem_fieldRange {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] {f : L →ₐ[K] L'} {y : L'} :
                                                                          y f.fieldRange ∃ (x : L), f x = y
                                                                          def IntermediateField.val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                          S →ₐ[K] L

                                                                          The embedding from an intermediate field of L / K to L.

                                                                          Equations
                                                                            Instances For
                                                                              @[simp]
                                                                              theorem IntermediateField.coe_val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                              @[simp]
                                                                              theorem IntermediateField.val_mk {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x S) :
                                                                              S.val x, hx = x
                                                                              theorem IntermediateField.range_val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                              @[simp]
                                                                              theorem IntermediateField.fieldRange_val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                              instance IntermediateField.AlgHom.inhabited {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                              Equations
                                                                                theorem IntermediateField.aeval_coe {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [CommSemiring R] [Algebra R K] [Algebra R L] [IsScalarTower R K L] (x : S) (P : Polynomial R) :
                                                                                (Polynomial.aeval x) P = ((Polynomial.aeval x) P)
                                                                                def IntermediateField.inclusion {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E F : IntermediateField K L} (hEF : E F) :
                                                                                E →ₐ[K] F

                                                                                The map E → F when E is an intermediate field contained in the intermediate field F.

                                                                                This is the intermediate field version of Subalgebra.inclusion.

                                                                                Equations
                                                                                  Instances For
                                                                                    theorem IntermediateField.inclusion_injective {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E F : IntermediateField K L} (hEF : E F) :
                                                                                    @[simp]
                                                                                    theorem IntermediateField.inclusion_self {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} :
                                                                                    inclusion = AlgHom.id K E
                                                                                    @[simp]
                                                                                    theorem IntermediateField.inclusion_inclusion {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E F G : IntermediateField K L} (hEF : E F) (hFG : F G) (x : E) :
                                                                                    (inclusion hFG) ((inclusion hEF) x) = (inclusion ) x
                                                                                    @[simp]
                                                                                    theorem IntermediateField.coe_inclusion {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E F : IntermediateField K L} (hEF : E F) (e : E) :
                                                                                    ((inclusion hEF) e) = e
                                                                                    @[simp]
                                                                                    theorem IntermediateField.toSubalgebra_inj {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} :
                                                                                    @[simp]
                                                                                    theorem IntermediateField.toSubfield_inj {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} :
                                                                                    theorem IntermediateField.map_injective {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :
                                                                                    theorem IntermediateField.set_range_subset {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                                                                                    Set.range (algebraMap K L) S
                                                                                    @[simp]
                                                                                    @[simp]
                                                                                    def IntermediateField.lift {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} (E : IntermediateField K F) :

                                                                                    Lift an intermediate field of an intermediate field.

                                                                                    Equations
                                                                                      Instances For
                                                                                        theorem IntermediateField.lift_le {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} (E : IntermediateField K F) :
                                                                                        lift E F
                                                                                        theorem IntermediateField.mem_lift {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} {E : IntermediateField K F} (x : F) :
                                                                                        x lift E x E
                                                                                        def IntermediateField.liftAlgEquiv {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (F : IntermediateField K E) :
                                                                                        F ≃ₐ[K] (lift F)

                                                                                        The algEquiv between an intermediate field and its lift.

                                                                                        Equations
                                                                                          Instances For
                                                                                            theorem IntermediateField.liftAlgEquiv_apply {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (F : IntermediateField K E) (x : F) :
                                                                                            ((liftAlgEquiv F) x) = x
                                                                                            def IntermediateField.restrictScalars (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] (E : IntermediateField L' L) :

                                                                                            Given a tower L / ↥E / L' / K of field extensions, where E is an L'-intermediate field of L, reinterpret E as a K-intermediate field of L.

                                                                                            Equations
                                                                                              Instances For
                                                                                                @[simp]
                                                                                                theorem IntermediateField.coe_restrictScalars (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E : IntermediateField L' L} :
                                                                                                (restrictScalars K E) = E
                                                                                                @[simp]
                                                                                                theorem IntermediateField.restrictScalars_toSubfield (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E : IntermediateField L' L} :
                                                                                                @[simp]
                                                                                                theorem IntermediateField.mem_restrictScalars (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E : IntermediateField L' L} {x : L} :
                                                                                                theorem IntermediateField.restrictScalars_injective (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] :
                                                                                                def IntermediateField.equivOfEq {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {S T : IntermediateField F E} (h : S = T) :
                                                                                                S ≃ₐ[F] T

                                                                                                Construct an algebra isomorphism from an equality of intermediate fields.

                                                                                                Equations
                                                                                                  Instances For
                                                                                                    @[simp]
                                                                                                    theorem IntermediateField.equivOfEq_apply {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {S T : IntermediateField F E} (h : S = T) (x : S.toSubalgebra) :
                                                                                                    (equivOfEq h) x = x,
                                                                                                    @[simp]
                                                                                                    theorem IntermediateField.equivOfEq_symm {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {S T : IntermediateField F E} (h : S = T) :
                                                                                                    @[simp]
                                                                                                    theorem IntermediateField.equivOfEq_rfl {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] (S : IntermediateField F E) :
                                                                                                    @[simp]
                                                                                                    theorem IntermediateField.equivOfEq_trans {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {S T U : IntermediateField F E} (hST : S = T) (hTU : T = U) :
                                                                                                    theorem IntermediateField.fieldRange_comp_val {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {K : Type u_6} [Field K] [Algebra F K] (L : IntermediateField F E) (f : E →ₐ[F] K) :
                                                                                                    (f.comp L.val).fieldRange = map f L
                                                                                                    noncomputable def IntermediateField.equivMap {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {K : Type u_6} [Field K] [Algebra F K] (L : IntermediateField F E) (f : E →ₐ[F] K) :
                                                                                                    L ≃ₐ[F] (map f L)

                                                                                                    An intermediate field is isomorphic to its image under an AlgHom (which is automatically injective).

                                                                                                    Equations
                                                                                                      Instances For
                                                                                                        @[simp]
                                                                                                        theorem IntermediateField.coe_equivMap_apply {F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {K : Type u_6} [Field K] [Algebra F K] (L : IntermediateField F E) (f : E →ₐ[F] K) (x : L) :
                                                                                                        ((L.equivMap f) x) = f x
                                                                                                        def Subfield.extendScalars {L : Type u_2} [Field L] {F E : Subfield L} (h : F E) :

                                                                                                        If F ≤ E are two subfields of L, then E is also an intermediate field of L / F. It can be viewed as an inverse to IntermediateField.toSubfield.

                                                                                                        Equations
                                                                                                          Instances For
                                                                                                            @[simp]
                                                                                                            theorem Subfield.coe_extendScalars {L : Type u_2} [Field L] {F E : Subfield L} (h : F E) :
                                                                                                            (extendScalars h) = E
                                                                                                            @[simp]
                                                                                                            theorem Subfield.extendScalars_toSubfield {L : Type u_2} [Field L] {F E : Subfield L} (h : F E) :
                                                                                                            @[simp]
                                                                                                            theorem Subfield.mem_extendScalars {L : Type u_2} [Field L] {F E : Subfield L} (h : F E) {x : L} :
                                                                                                            theorem Subfield.extendScalars_le_extendScalars_iff {L : Type u_2} [Field L] {F E E' : Subfield L} (h : F E) (h' : F E') :
                                                                                                            theorem Subfield.extendScalars_le_iff {L : Type u_2} [Field L] {F E : Subfield L} (h : F E) (E' : IntermediateField (↥F) L) :
                                                                                                            theorem Subfield.le_extendScalars_iff {L : Type u_2} [Field L] {F E : Subfield L} (h : F E) (E' : IntermediateField (↥F) L) :

                                                                                                            Subfield.extendScalars.orderIso bundles Subfield.extendScalars into an order isomorphism from { E : Subfield L // F ≤ E } to IntermediateField F L. Its inverse is IntermediateField.toSubfield.

                                                                                                            Equations
                                                                                                              Instances For
                                                                                                                @[simp]
                                                                                                                theorem Subfield.extendScalars.orderIso_apply {L : Type u_2} [Field L] (F : Subfield L) (E : { E : Subfield L // F E }) :
                                                                                                                def IntermediateField.extendScalars {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) :

                                                                                                                If F ≤ E are two intermediate fields of L / K, then E is also an intermediate field of L / F. It can be viewed as an inverse to IntermediateField.restrictScalars.

                                                                                                                Equations
                                                                                                                  Instances For
                                                                                                                    @[simp]
                                                                                                                    theorem IntermediateField.coe_extendScalars {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) :
                                                                                                                    (extendScalars h) = E
                                                                                                                    @[simp]
                                                                                                                    theorem IntermediateField.extendScalars_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) :
                                                                                                                    @[simp]
                                                                                                                    theorem IntermediateField.mem_extendScalars {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) {x : L} :
                                                                                                                    @[simp]
                                                                                                                    theorem IntermediateField.extendScalars_restrictScalars {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) :
                                                                                                                    theorem IntermediateField.extendScalars_le_extendScalars_iff {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E E' : IntermediateField K L} (h : F E) (h' : F E') :
                                                                                                                    theorem IntermediateField.extendScalars_le_iff {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) (E' : IntermediateField (↥F) L) :
                                                                                                                    theorem IntermediateField.le_extendScalars_iff {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) (E' : IntermediateField (↥F) L) :

                                                                                                                    IntermediateField.extendScalars.orderIso bundles IntermediateField.extendScalars into an order isomorphism from { E : IntermediateField K L // F ≤ E } to IntermediateField F L. Its inverse is IntermediateField.restrictScalars.

                                                                                                                    Equations
                                                                                                                      Instances For
                                                                                                                        @[simp]
                                                                                                                        @[simp]
                                                                                                                        theorem IntermediateField.extendScalars.orderIso_apply {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (F : IntermediateField K L) (E : { E : IntermediateField K L // F E }) :
                                                                                                                        def IntermediateField.restrict {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) :

                                                                                                                        If F ≤ E are two intermediate fields of L / K, then F is also an intermediate field of E / K. It is an inverse of IntermediateField.lift, and can be viewed as a dual to IntermediateField.extendScalars.

                                                                                                                        Equations
                                                                                                                          Instances For
                                                                                                                            theorem IntermediateField.mem_restrict {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) (x : E) :
                                                                                                                            x restrict h x F
                                                                                                                            @[simp]
                                                                                                                            theorem IntermediateField.lift_restrict {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) :
                                                                                                                            noncomputable def IntermediateField.restrict_algEquiv {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} (h : F E) :
                                                                                                                            F ≃ₐ[K] (restrict h)

                                                                                                                            F is equivalent to F as an intermediate field of E / K.

                                                                                                                            Equations
                                                                                                                              Instances For