Documentation

Mathlib.Analysis.SpecialFunctions.Gamma.Basic

The Gamma function #

This file defines the Γ function (of a real or complex variable s). We define this by Euler's integral Γ(s) = ∫ x in Ioi 0, exp (-x) * x ^ (s - 1) in the range where this integral converges (i.e., for 0 < s in the real case, and 0 < re s in the complex case).

We show that this integral satisfies Γ(1) = 1 and Γ(s + 1) = s * Γ(s); hence we can define Γ(s) for all s as the unique function satisfying this recurrence and agreeing with Euler's integral in the convergence range. (If s = -n for n ∈ ℕ, then the function is undefined, and we set it to be 0 by convention.)

Gamma function: main statements (complex case) #

Gamma function: main statements (real case) #

Tags #

Gamma

theorem Real.Gamma_integrand_isLittleO (s : ) :
(fun (x : ) => exp (-x) * x ^ s) =o[Filter.atTop] fun (x : ) => exp (-(1 / 2) * x)

Asymptotic bound for the Γ function integrand.

theorem Real.GammaIntegral_convergent {s : } (h : 0 < s) :

The Euler integral for the Γ function converges for positive real s.

theorem Complex.GammaIntegral_convergent {s : } (hs : 0 < s.re) :
MeasureTheory.IntegrableOn (fun (x : ) => (Real.exp (-x)) * x ^ (s - 1)) (Set.Ioi 0) MeasureTheory.volume

The integral defining the Γ function converges for complex s with 0 < re s.

This is proved by reduction to the real case.

Euler's integral for the Γ function (of a complex variable s), defined as ∫ x in Ioi 0, exp (-x) * x ^ (s - 1).

See Complex.GammaIntegral_convergent for a proof of the convergence of the integral for 0 < re s.

Equations
    Instances For
      theorem Complex.GammaIntegral_ofReal (s : ) :
      (↑s).GammaIntegral = ( (x : ) in Set.Ioi 0, Real.exp (-x) * x ^ (s - 1))

      Now we establish the recurrence relation Γ(s + 1) = s * Γ(s) using integration by parts.

      def Complex.partialGamma (s : ) (X : ) :

      The indefinite version of the Γ function, Γ(s, X) = ∫ x ∈ 0..X, exp(-x) x ^ (s - 1).

      Equations
        Instances For
          theorem Complex.partialGamma_add_one {s : } (hs : 0 < s.re) {X : } (hX : 0 X) :
          (s + 1).partialGamma X = s * s.partialGamma X - (Real.exp (-X)) * X ^ s

          The recurrence relation for the indefinite version of the Γ function.

          theorem Complex.GammaIntegral_add_one {s : } (hs : 0 < s.re) :

          The recurrence relation for the Γ integral.

          Now we define Γ(s) on the whole complex plane, by recursion.

          noncomputable def Complex.GammaAux :

          The nth function in this family is Γ(s) if -n < s.re, and junk otherwise.

          Equations
            Instances For
              theorem Complex.GammaAux_recurrence1 (s : ) (n : ) (h1 : -s.re < n) :
              GammaAux n s = GammaAux n (s + 1) / s
              theorem Complex.GammaAux_recurrence2 (s : ) (n : ) (h1 : -s.re < n) :
              GammaAux n s = GammaAux (n + 1) s
              @[irreducible]
              def Complex.Gamma (s : ) :

              The Γ function (of a complex variable s).

              Equations
                Instances For
                  theorem Complex.Gamma_eq_GammaAux (s : ) (n : ) (h1 : -s.re < n) :
                  theorem Complex.Gamma_add_one (s : ) (h2 : s 0) :
                  Gamma (s + 1) = s * Gamma s

                  The recurrence relation for the Γ function.

                  @[simp]
                  @[simp]

                  At 0 the Gamma function is undefined; by convention we assign it the value 0.

                  theorem Complex.Gamma_neg_nat_eq_zero (n : ) :
                  Gamma (-n) = 0

                  At -n for n ∈ ℕ, the Gamma function is undefined; by convention we assign it the value 0.

                  theorem Complex.integral_cpow_mul_exp_neg_mul_Ioi {a : } {r : } (ha : 0 < a.re) (hr : 0 < r) :
                  (t : ) in Set.Ioi 0, t ^ (a - 1) * exp (-(r * t)) = (1 / r) ^ a * Gamma a

                  Expresses the integral over Ioi 0 of t ^ (a - 1) * exp (-(r * t)) in terms of the Gamma function, for complex a.

                  def Real.Gamma (s : ) :

                  The Γ function (of a real variable s).

                  Equations
                    Instances For
                      theorem Real.Gamma_eq_integral {s : } (hs : 0 < s) :
                      Gamma s = (x : ) in Set.Ioi 0, exp (-x) * x ^ (s - 1)
                      theorem Real.Gamma_add_one {s : } (hs : s 0) :
                      Gamma (s + 1) = s * Gamma s
                      @[simp]
                      theorem Real.Gamma_one :
                      Gamma 1 = 1
                      theorem Complex.Gamma_ofReal (s : ) :
                      Gamma s = (Real.Gamma s)
                      @[simp]
                      @[simp]
                      theorem Real.Gamma_zero :
                      Gamma 0 = 0

                      At 0 the Gamma function is undefined; by convention we assign it the value 0.

                      theorem Real.Gamma_neg_nat_eq_zero (n : ) :
                      Gamma (-n) = 0

                      At -n for n ∈ ℕ, the Gamma function is undefined; by convention we assign it the value 0.

                      theorem Real.Gamma_pos_of_pos {s : } (hs : 0 < s) :
                      0 < Gamma s
                      theorem Real.Gamma_nonneg_of_nonneg {s : } (hs : 0 s) :
                      theorem Real.integral_rpow_mul_exp_neg_mul_Ioi {a r : } (ha : 0 < a) (hr : 0 < r) :
                      (t : ) in Set.Ioi 0, t ^ (a - 1) * exp (-(r * t)) = (1 / r) ^ a * Gamma a

                      Expresses the integral over Ioi 0 of t ^ (a - 1) * exp (-(r * t)), for positive real r, in terms of the Gamma function.

                      The positivity extension which identifies expressions of the form Gamma a.

                      Equations
                        Instances For
                          theorem Real.Gamma_ne_zero {s : } (hs : ∀ (m : ), s -m) :

                          The Gamma function does not vanish on (except at non-positive integers, where the function is mathematically undefined and we set it to 0 by convention).

                          theorem Real.Gamma_eq_zero_iff (s : ) :
                          Gamma s = 0 ∃ (m : ), s = -m