Documentation

Mathlib.Analysis.SpecialFunctions.Log.ERealExp

Extended Nonnegative Real Exponential #

We define exp as an extension of the exponential of a real to the extended reals EReal. The function takes values in the extended nonnegative reals ℝ≥0∞, with exp ⊥ = 0 and exp ⊤ = ⊤.

Main Definitions #

Main Results #

Tags #

ENNReal, EReal, exponential

Definition #

noncomputable def EReal.exp :

Exponential as a function from EReal to ℝ≥0∞.

Equations
    Instances For
      @[simp]
      theorem EReal.exp_bot :
      @[simp]
      theorem EReal.exp_zero :
      exp 0 = 1
      @[simp]
      @[simp]
      theorem EReal.exp_coe (x : ) :
      @[simp]
      theorem EReal.exp_eq_zero_iff {x : EReal} :
      x.exp = 0 x =
      @[simp]
      theorem EReal.exp_eq_top_iff {x : EReal} :

      Monotonicity #

      @[simp]
      theorem EReal.exp_lt_exp_iff {a b : EReal} :
      a.exp < b.exp a < b
      @[simp]
      theorem EReal.zero_lt_exp_iff {a : EReal} :
      0 < a.exp < a
      @[simp]
      theorem EReal.exp_lt_top_iff {a : EReal} :
      @[simp]
      theorem EReal.exp_lt_one_iff {a : EReal} :
      a.exp < 1 a < 0
      @[simp]
      theorem EReal.one_lt_exp_iff {a : EReal} :
      1 < a.exp 0 < a
      @[simp]
      theorem EReal.exp_le_exp_iff {a b : EReal} :
      a.exp b.exp a b
      @[simp]
      theorem EReal.exp_le_one_iff {a : EReal} :
      a.exp 1 a 0
      @[simp]
      theorem EReal.one_le_exp_iff {a : EReal} :
      1 a.exp 0 a
      theorem EReal.exp_le_exp {a b : EReal} (h : a b) :
      a.exp b.exp
      theorem EReal.exp_lt_exp {a b : EReal} (h : a < b) :
      a.exp < b.exp

      Algebraic properties #

      theorem EReal.exp_neg (x : EReal) :
      theorem EReal.exp_add (x y : EReal) :
      (x + y).exp = x.exp * y.exp