Documentation

Mathlib.CategoryTheory.Bicategory.FunctorBicategory.Oplax

The bicategory of oplax functors between two bicategories #

Given bicategories B and C, we give a bicategory structure on OplaxFunctor B C whose

def CategoryTheory.Oplax.OplaxTrans.whiskerLeft {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H : OplaxFunctor B C} (η : F G) {θ ι : G H} (Γ : θ ι) :

Left whiskering of an oplax natural transformation and a modification.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Oplax.OplaxTrans.whiskerLeft_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H : OplaxFunctor B C} (η : F G) {θ ι : G H} (Γ : θ ι) (a : B) :
      (whiskerLeft η Γ).app a = Bicategory.whiskerLeft (η.app a) (Γ.app a)
      def CategoryTheory.Oplax.OplaxTrans.whiskerRight {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H : OplaxFunctor B C} {η θ : F G} (Γ : η θ) (ι : G H) :

      Right whiskering of an oplax natural transformation and a modification.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Oplax.OplaxTrans.whiskerRight_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H : OplaxFunctor B C} {η θ : F G} (Γ : η θ) (ι : G H) (a : B) :
          def CategoryTheory.Oplax.OplaxTrans.associator {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H I : OplaxFunctor B C} (η : F G) (θ : G H) (ι : H I) :

          Associator for the vertical composition of oplax natural transformations.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Oplax.OplaxTrans.associator_hom_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H I : OplaxFunctor B C} (η : F G) (θ : G H) (ι : H I) (a : B) :
              (associator η θ ι).hom.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom
              @[simp]
              theorem CategoryTheory.Oplax.OplaxTrans.associator_inv_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H I : OplaxFunctor B C} (η : F G) (θ : G H) (ι : H I) (a : B) :
              (associator η θ ι).inv.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv

              Left unitor for the vertical composition of oplax natural transformations.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Oplax.OplaxTrans.leftUnitor_inv_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) (a : B) :
                  @[simp]
                  theorem CategoryTheory.Oplax.OplaxTrans.leftUnitor_hom_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) (a : B) :

                  Right unitor for the vertical composition of oplax natural transformations.

                  Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Oplax.OplaxTrans.rightUnitor_hom_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) (a : B) :
                      @[simp]
                      theorem CategoryTheory.Oplax.OplaxTrans.rightUnitor_inv_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) (a : B) :

                      A bicategory structure on the oplax functors between bicategories.

                      Equations
                        Instances For
                          @[simp]
                          @[simp]
                          theorem CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_inv_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ x✝² : OplaxFunctor B C} (x✝³ : OplaxFunctor B C) (η : x✝ x✝¹) (θ : x✝¹ x✝²) (ι : x✝² x✝³) (a : B) :
                          (Bicategory.associator η θ ι).inv.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
                          @[simp]
                          @[simp]
                          theorem CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_hom_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ x✝² : OplaxFunctor B C} (x✝³ : OplaxFunctor B C) (η : x✝ x✝¹) (θ : x✝¹ x✝²) (ι : x✝² x✝³) (a : B) :
                          (Bicategory.associator η θ ι).hom.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom
                          @[simp]
                          theorem CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_homCategory_comp_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] (a b : OplaxFunctor B C) {X✝ Y✝ Z✝ : a b} (Γ : Modification X✝ Y✝) (Δ : Modification Y✝ Z✝) (a✝ : B) :
                          (CategoryStruct.comp Γ Δ).app a✝ = CategoryStruct.comp (Γ.app a✝) (Δ.app a✝)
                          @[simp]
                          theorem CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_comp_naturality (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {X✝ Y✝ Z✝ : OplaxFunctor B C} (η : OplaxTrans X✝ Y✝) (θ : OplaxTrans Y✝ Z✝) {a b : B} (f : a b) :
                          @[simp]
                          theorem CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_inv_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ : OplaxFunctor B C} (η : x✝ x✝¹) (a : B) :
                          @[simp]
                          theorem CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_comp_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {X✝ Y✝ Z✝ : OplaxFunctor B C} (η : OplaxTrans X✝ Y✝) (θ : OplaxTrans Y✝ Z✝) (a : B) :
                          @[simp]
                          theorem CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerLeft_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ x✝² : OplaxFunctor B C} (η : x✝ x✝¹) (x✝³ x✝⁴ : x✝¹ x✝²) (Γ : x✝³ x✝⁴) (a : B) :
                          @[simp]
                          @[simp]
                          theorem CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerRight_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ x✝² : OplaxFunctor B C} (x✝³ x✝⁴ : x✝ x✝¹) (Γ : x✝³ x✝⁴) (η : x✝¹ x✝²) (a : B) :
                          @[simp]
                          theorem CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_hom_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ : OplaxFunctor B C} (η : x✝ x✝¹) (a : B) :