The Factorisation Category of a Category #
Factorisation f
is the category containing as objects all factorisations of a morphism f
.
We show that Factorisation f
always has an initial and a terminal object.
TODO: Show that Factorisation f
is isomorphic to a comma category in two ways.
TODO: Make MonoFactorisation f
a special case of a Factorisation f
.
Factorisations of a morphism f
as a structure, containing, one object, two morphisms,
and the condition that their composition equals f
.
- mid : C
The midpoint of the factorisation.
The morphism into the factorisation midpoint.
The morphism out of the factorisation midpoint.
The factorisation condition.
Instances For
Morphisms of Factorisation f
consist of morphism between their midpoints and the obvious
commutativity conditions.
The morphism between the midpoints of the factorizations.
The left commuting triangle of the factorization morphism.
The right commuting triangle of the factorization morphism.
Instances For
The identity morphism of Factorisation f
.
Equations
Instances For
Composition of morphisms in Factorisation f
.
Equations
Instances For
Equations
The initial object in Factorisation f
, with the domain of f
as its midpoint.
Equations
Instances For
The unique morphism out of Factorisation.initial f
.
Equations
Instances For
Equations
The terminal object in Factorisation f
, with the codomain of f
as its midpoint.
Equations
Instances For
The unique morphism into Factorisation.terminal f
.
Equations
Instances For
Equations
The initial factorisation is an initial object
Equations
Instances For
The terminal factorisation is a terminal object
Equations
Instances For
The forgetful functor from Factorisation f
to the underlying category C
.