Documentation

Mathlib.CategoryTheory.Category.Pairwise

The category of "pairwise intersections". #

Given ι : Type v, we build the diagram category Pairwise ι with objects single i and pair i j, for i j : ι, whose only non-identity morphisms are left : pair i j ⟶ single i and right : pair i j ⟶ single j.

We use this later in describing (one formulation of) the sheaf condition.

Given any function U : ι → α, where α is some complete lattice (e.g. (Opens X)ᵒᵖ), we produce a functor Pairwise ι ⥤ α in the obvious way, and show that iSup U provides a colimit cocone over this functor.

inductive CategoryTheory.Pairwise (ι : Type v) :

An inductive type representing either a single term of a type ι, or a pair of terms. We use this as the objects of a category to describe the sheaf condition.

Instances For
    inductive CategoryTheory.Pairwise.Hom {ι : Type v} :
    Pairwise ιPairwise ιType v

    Morphisms in the category Pairwise ι. The only non-identity morphisms are left i j : single i ⟶ pair i j and right i j : single j ⟶ pair i j.

    Instances For
      def CategoryTheory.Pairwise.id {ι : Type v} (o : Pairwise ι) :
      o.Hom o

      The identity morphism in Pairwise ι.

      Equations
        Instances For
          def CategoryTheory.Pairwise.comp {ι : Type v} {o₁ o₂ o₃ : Pairwise ι} :
          o₁.Hom o₂o₂.Hom o₃o₁.Hom o₃

          Composition of morphisms in Pairwise ι.

          Equations
            Instances For

              A helper tactic for cat_disch and Pairwise.

              Equations
                Instances For
                  def CategoryTheory.Pairwise.diagramObj {ι : Type v} {α : Type u} (U : ια) [SemilatticeInf α] :
                  Pairwise ια

                  Auxiliary definition for diagram.

                  Equations
                    Instances For
                      def CategoryTheory.Pairwise.diagramMap {ι : Type v} {α : Type u} (U : ια) [SemilatticeInf α] {o₁ o₂ : Pairwise ι} :
                      (o₁ o₂) → (diagramObj U o₁ diagramObj U o₂)

                      Auxiliary definition for diagram.

                      Equations
                        Instances For
                          def CategoryTheory.Pairwise.diagram {ι : Type v} {α : Type u} (U : ια) [SemilatticeInf α] :

                          Given a function U : ι → α for [SemilatticeInf α], we obtain a functor Pairwise ι ⥤ α, sending single i to U i and pair i j to U i ⊓ U j, and the morphisms to the obvious inequalities.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Pairwise.diagram_map {ι : Type v} {α : Type u} (U : ια) [SemilatticeInf α] {X✝ Y✝ : Pairwise ι} (x✝ : X✝ Y✝) :
                              (diagram U).map x✝ = diagramMap U x✝
                              @[simp]
                              theorem CategoryTheory.Pairwise.diagram_obj {ι : Type v} {α : Type u} (U : ια) [SemilatticeInf α] (a✝ : Pairwise ι) :
                              (diagram U).obj a✝ = diagramObj U a✝
                              def CategoryTheory.Pairwise.coconeιApp {ι : Type v} {α : Type u} (U : ια) [CompleteLattice α] (o : Pairwise ι) :

                              Auxiliary definition for cocone.

                              Equations
                                Instances For
                                  def CategoryTheory.Pairwise.cocone {ι : Type v} {α : Type u} (U : ια) [CompleteLattice α] :

                                  Given a function U : ι → α for [CompleteLattice α], iSup U provides a cocone over diagram U.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.Pairwise.cocone_pt {ι : Type v} {α : Type u} (U : ια) [CompleteLattice α] :
                                      (cocone U).pt = iSup U
                                      @[simp]
                                      theorem CategoryTheory.Pairwise.cocone_ι_app {ι : Type v} {α : Type u} (U : ια) [CompleteLattice α] (o : Pairwise ι) :

                                      Given a function U : ι → α for [CompleteLattice α], iInf U provides a limit cone over diagram U.

                                      Equations
                                        Instances For