Documentation

Mathlib.CategoryTheory.Dialectica.Monoidal

The Dialectica category is symmetric monoidal #

We show that the category Dial has a symmetric monoidal category structure.

The object X ⊗ Y in the Dial C category just tuples the left and right components.

Equations
    Instances For
      def CategoryTheory.Dial.tensorHomImpl {C : Type u} [Category.{v, u} C] [Limits.HasFiniteProducts C] [Limits.HasPullbacks C] {X₁ X₂ Y₁ Y₂ : Dial C} (f : X₁ X₂) (g : Y₁ Y₂) :
      X₁.tensorObjImpl Y₁ X₂.tensorObjImpl Y₂

      The functorial action of X ⊗ Y in Dial C.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Dial.tensorHomImpl_f {C : Type u} [Category.{v, u} C] [Limits.HasFiniteProducts C] [Limits.HasPullbacks C] {X₁ X₂ Y₁ Y₂ : Dial C} (f : X₁ X₂) (g : Y₁ Y₂) :

          The unit for the tensor X ⊗ Y in Dial C.

          Equations
            Instances For

              Left unit cancellation 1 ⊗ X ≅ X in Dial C.

              Equations
                Instances For

                  Right unit cancellation X ⊗ 1 ≅ X in Dial C.

                  Equations
                    Instances For

                      The associator for tensor, (X ⊗ Y) ⊗ Z ≅ X ⊗ (Y ⊗ Z) in Dial C.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Dial.tensorHom_f {C : Type u} [Category.{v, u} C] [Limits.HasFiniteProducts C] [Limits.HasPullbacks C] {X₁✝ Y₁✝ X₂✝ Y₂✝ : Dial C} (f : X₁✝ Y₁✝) (g : X₂✝ Y₂✝) :
                          theorem CategoryTheory.Dial.tensor_comp {C : Type u} [Category.{v, u} C] [Limits.HasFiniteProducts C] [Limits.HasPullbacks C] {X₁ Y₁ Z₁ X₂ Y₂ Z₂ : Dial C} (f₁ : X₁ Y₁) (f₂ : X₂ Y₂) (g₁ : Y₁ Z₁) (g₂ : Y₂ Z₂) :

                          The braiding isomorphism X ⊗ Y ≅ Y ⊗ X in Dial C.

                          Equations
                            Instances For