Documentation

Mathlib.CategoryTheory.Limits.Shapes.Grothendieck

(Co)limits on the (strict) Grothendieck Construction #

theorem CategoryTheory.Limits.hasColimit_ι_comp {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C Cat} {H : Type u₂} [Category.{v₂, u₂} H] (G : Functor (Grothendieck F) H) [∀ {X Y : C} (f : X Y), HasColimit (Functor.comp (F.map f) ((Grothendieck.ι F Y).comp G))] (X : C) :
def CategoryTheory.Limits.fiberwiseColimit {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C Cat} {H : Type u₂} [Category.{v₂, u₂} H] (G : Functor (Grothendieck F) H) [∀ {X Y : C} (f : X Y), HasColimit (Functor.comp (F.map f) ((Grothendieck.ι F Y).comp G))] :

A functor taking a colimit on each fiber of a functor G : Grothendieck F ⥤ H.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Limits.fiberwiseColimit_obj {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C Cat} {H : Type u₂} [Category.{v₂, u₂} H] (G : Functor (Grothendieck F) H) [∀ {X Y : C} (f : X Y), HasColimit (Functor.comp (F.map f) ((Grothendieck.ι F Y).comp G))] (X : C) :

      Similar to colimit and colim, taking fiberwise colimits is a functor (Grothendieck F ⥤ H) ⥤ (C ⥤ H) between functor categories.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Limits.fiberwiseColim_map_app {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C Cat) (H : Type u₂) [Category.{v₂, u₂} H] [∀ (c : C), HasColimitsOfShape (↑(F.obj c)) H] {X✝ Y✝ : Functor (Grothendieck F) H} (α : X✝ Y✝) (c : C) :

          Every functor G : Grothendieck F ⥤ H induces a natural transformation from G to the composition of the forgetful functor on Grothendieck F with the fiberwise colimit on G.

          Equations
            Instances For

              A cocone on a functor G : Grothendieck F ⥤ H induces a cocone on the fiberwise colimit on G.

              Equations
                Instances For

                  If c is a colimit cocone on G : Grothendieck F ⥤ H, then the induced cocone on the fiberwise colimit on G is a colimit cocone, too.

                  Equations
                    Instances For

                      For a functor G : Grothendieck F ⥤ H, every cocone over fiberwiseColimit G induces a cocone over G itself.

                      Equations
                        Instances For

                          If a cocone c over a functor G : Grothendieck F ⥤ H is a colimit, than the induced cocone coconeOfFiberwiseCocone G c

                          Equations
                            Instances For

                              We can infer that a functor G : Grothendieck F ⥤ H, with F : C ⥤ Cat, has a colimit from the fact that each of its fibers has a colimit and that these fiberwise colimits, as a functor C ⥤ H have a colimit.

                              For every functor G on the Grothendieck construction Grothendieck F, if G has a colimit and every fiber of G has a colimit, then taking this colimit is isomorphic to first taking the fiberwise colimit and then the colimit of the resulting functor.

                              Equations
                                Instances For

                                  The isomorphism colimitFiberwiseColimitIso induces an isomorphism of functors (J ⥤ C) ⥤ C between fiberwiseColim F H ⋙ colim and colim.

                                  Equations
                                    Instances For

                                      Composing fiberwiseColim F H with the evaluation functor (evaluation C H).obj c is naturally isomorphic to precomposing the Grothendieck inclusion Grothendieck.ι to colim.

                                      Equations
                                        Instances For