Documentation

Mathlib.CategoryTheory.Limits.Shapes.Multiequalizer

Multi-(co)equalizers #

A multiequalizer is an equalizer of two morphisms between two products. Since both products and equalizers are limits, such an object is again a limit. This file provides the diagram whose limit is indeed such an object. In fact, it is well-known that any limit can be obtained as a multiequalizer. The dual construction (multicoequalizers) is also provided.

Projects #

Prove that a multiequalizer can be identified with an equalizer between products (and analogously for multicoequalizers).

Prove that the limit of any diagram is a multiequalizer (and similarly for colimits).

structure CategoryTheory.Limits.MulticospanShape :
Type (max (w + 1) (w' + 1))

The shape of a multiequalizer diagram. It involves two types L and R, and two maps RL.

  • L : Type w

    the left type

  • R : Type w'

    the right type

  • fst : self.Rself.L

    the first map RL

  • snd : self.Rself.L

    the second map RL

Instances For

    Given a type ι, this is the shape of multiequalizer diagrams corresponding to situations where we want to equalize two families of maps U i ⟶ V ⟨i, j⟩ and U j ⟶ V ⟨i, j⟩ with i : ι and j : ι.

    Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Limits.MulticospanShape.prod_snd (ι : Type w) (self : ι × ι) :
        (prod ι).snd self = self.2
        @[simp]
        theorem CategoryTheory.Limits.MulticospanShape.prod_fst (ι : Type w) (self : ι × ι) :
        (prod ι).fst self = self.1
        @[simp]
        structure CategoryTheory.Limits.MultispanShape :
        Type (max (w + 1) (w' + 1))

        The shape of a multicoequalizer diagram. It involves two types L and R, and two maps LR.

        • L : Type w

          the left type

        • R : Type w'

          the right type

        • fst : self.Lself.R

          the first map LR

        • snd : self.Lself.R

          the second map LR

        Instances For

          Given a type ι, this is the shape of multicoequalizer diagrams corresponding to situations where we want to coequalize two families of maps V ⟨i, j⟩ ⟶ U i and V ⟨i, j⟩ ⟶ U j with i : ι and j : ι.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Limits.MultispanShape.prod_snd (ι : Type w) (self : ι × ι) :
              (prod ι).snd self = self.2
              @[simp]
              theorem CategoryTheory.Limits.MultispanShape.prod_fst (ι : Type w) (self : ι × ι) :
              (prod ι).fst self = self.1
              @[simp]

              Given a linearly ordered type ι, this is the shape of multicoequalizer diagrams corresponding to situations where we want to coequalize two families of maps V ⟨i, j⟩ ⟶ U i and V ⟨i, j⟩ ⟶ U j with i < j.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Limits.MultispanShape.ofLinearOrder_snd (ι : Type w) [LinearOrder ι] (x : {x : ι × ι | x.1 < x.2}) :
                  (ofLinearOrder ι).snd x = (↑x).2
                  @[simp]
                  theorem CategoryTheory.Limits.MultispanShape.ofLinearOrder_fst (ι : Type w) [LinearOrder ι] (x : {x : ι × ι | x.1 < x.2}) :
                  (ofLinearOrder ι).fst x = (↑x).1
                  @[simp]

                  The type underlying the multiequalizer diagram.

                  Instances For

                    The type underlying the multiecoqualizer diagram.

                    Instances For

                      Morphisms for WalkingMulticospan.

                      Instances For

                        Composition of morphisms for WalkingMulticospan.

                        Equations
                          Instances For

                            Morphisms for WalkingMultispan.

                            Instances For

                              Composition of morphisms for WalkingMultispan.

                              Equations
                                Instances For
                                  structure CategoryTheory.Limits.MulticospanIndex (J : MulticospanShape) (C : Type u) [Category.{v, u} C] :
                                  Type (max (max (max u v) w) w')

                                  This is a structure encapsulating the data necessary to define a Multicospan.

                                  Instances For
                                    structure CategoryTheory.Limits.MultispanIndex (J : MultispanShape) (C : Type u) [Category.{v, u} C] :
                                    Type (max (max (max u v) w) w')

                                    This is a structure encapsulating the data necessary to define a Multispan.

                                    Instances For

                                      The multicospan associated to I : MulticospanIndex.

                                      Equations
                                        Instances For

                                          The induced map ∏ᶜ I.left ⟶ ∏ᶜ I.right via I.fst.

                                          Equations
                                            Instances For

                                              The induced map ∏ᶜ I.left ⟶ ∏ᶜ I.right via I.snd.

                                              Equations
                                                Instances For

                                                  Taking the multiequalizer over the multicospan index is equivalent to taking the equalizer over the two morphisms ∏ᶜ I.left ⇉ ∏ᶜ I.right. This is the diagram of the latter.

                                                  Equations
                                                    Instances For

                                                      The multispan associated to I : MultispanIndex.

                                                      Equations
                                                        Instances For

                                                          The induced map ∐ I.left ⟶ ∐ I.right via I.fst.

                                                          Equations
                                                            Instances For

                                                              The induced map ∐ I.left ⟶ ∐ I.right via I.snd.

                                                              Equations
                                                                Instances For
                                                                  @[reducible, inline]

                                                                  Taking the multicoequalizer over the multispan index is equivalent to taking the coequalizer over the two morphisms ∐ I.left ⇉ ∐ I.right. This is the diagram of the latter.

                                                                  Equations
                                                                    Instances For
                                                                      @[reducible, inline]
                                                                      abbrev CategoryTheory.Limits.Multifork {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) :
                                                                      Type (max (max (max w w') u) v)

                                                                      A multifork is a cone over a multicospan.

                                                                      Equations
                                                                        Instances For
                                                                          @[reducible, inline]
                                                                          abbrev CategoryTheory.Limits.Multicofork {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) :
                                                                          Type (max (max (max w w') u) v)

                                                                          A multicofork is a cocone over a multispan.

                                                                          Equations
                                                                            Instances For

                                                                              The maps from the cone point of a multifork to the objects on the left.

                                                                              Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem CategoryTheory.Limits.Multifork.hom_comp_ι {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} (K₁ K₂ : Multifork I) (f : K₁ K₂) (j : J.L) :
                                                                                  CategoryStruct.comp f.hom (K₂.ι j) = K₁.ι j
                                                                                  @[simp]
                                                                                  theorem CategoryTheory.Limits.Multifork.hom_comp_ι_assoc {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} (K₁ K₂ : Multifork I) (f : K₁ K₂) (j : J.L) {Z : C} (h : I.left j Z) :
                                                                                  def CategoryTheory.Limits.Multifork.ofι {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) (P : C) (ι : (a : J.L) → P I.left a) (w : ∀ (b : J.R), CategoryStruct.comp (ι (J.fst b)) (I.fst b) = CategoryStruct.comp (ι (J.snd b)) (I.snd b)) :

                                                                                  Construct a multifork using a collection ι of morphisms.

                                                                                  Equations
                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem CategoryTheory.Limits.Multifork.ofι_pt {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) (P : C) (ι : (a : J.L) → P I.left a) (w : ∀ (b : J.R), CategoryStruct.comp (ι (J.fst b)) (I.fst b) = CategoryStruct.comp (ι (J.snd b)) (I.snd b)) :
                                                                                      (ofι I P ι w).pt = P
                                                                                      @[simp]
                                                                                      theorem CategoryTheory.Limits.Multifork.ofι_π_app {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) (P : C) (ι : (a : J.L) → P I.left a) (w : ∀ (b : J.R), CategoryStruct.comp (ι (J.fst b)) (I.fst b) = CategoryStruct.comp (ι (J.snd b)) (I.snd b)) (x : WalkingMulticospan J) :
                                                                                      (ofι I P ι w).π.app x = match x with | WalkingMulticospan.left a => ι a | WalkingMulticospan.right b => CategoryStruct.comp (ι (J.fst b)) (I.fst b)
                                                                                      def CategoryTheory.Limits.Multifork.IsLimit.mk {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} (K : Multifork I) (lift : (E : Multifork I) → E.pt K.pt) (fac : ∀ (E : Multifork I) (i : J.L), CategoryStruct.comp (lift E) (K.ι i) = E.ι i) (uniq : ∀ (E : Multifork I) (m : E.pt K.pt), (∀ (i : J.L), CategoryStruct.comp m (K.ι i) = E.ι i)m = lift E) :

                                                                                      This definition provides a convenient way to show that a multifork is a limit.

                                                                                      Equations
                                                                                        Instances For
                                                                                          @[simp]
                                                                                          theorem CategoryTheory.Limits.Multifork.IsLimit.mk_lift {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} (K : Multifork I) (lift : (E : Multifork I) → E.pt K.pt) (fac : ∀ (E : Multifork I) (i : J.L), CategoryStruct.comp (lift E) (K.ι i) = E.ι i) (uniq : ∀ (E : Multifork I) (m : E.pt K.pt), (∀ (i : J.L), CategoryStruct.comp m (K.ι i) = E.ι i)m = lift E) (E : Multifork I) :
                                                                                          (mk K lift fac uniq).lift E = lift E
                                                                                          theorem CategoryTheory.Limits.Multifork.IsLimit.hom_ext {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} {K : Multifork I} (hK : IsLimit K) {T : C} {f g : T K.pt} (h : ∀ (a : J.L), CategoryStruct.comp f (K.ι a) = CategoryStruct.comp g (K.ι a)) :
                                                                                          f = g
                                                                                          def CategoryTheory.Limits.Multifork.IsLimit.lift {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} {K : Multifork I} (hK : IsLimit K) {T : C} (k : (a : J.L) → T I.left a) (hk : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) :
                                                                                          T K.pt

                                                                                          Constructor for morphisms to the point of a limit multifork.

                                                                                          Equations
                                                                                            Instances For
                                                                                              @[simp]
                                                                                              theorem CategoryTheory.Limits.Multifork.IsLimit.fac {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} {K : Multifork I} (hK : IsLimit K) {T : C} (k : (a : J.L) → T I.left a) (hk : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) (a : J.L) :
                                                                                              CategoryStruct.comp (lift hK k hk) (K.ι a) = k a
                                                                                              @[simp]
                                                                                              theorem CategoryTheory.Limits.Multifork.IsLimit.fac_assoc {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} {K : Multifork I} (hK : IsLimit K) {T : C} (k : (a : J.L) → T I.left a) (hk : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) (a : J.L) {Z : C} (h : I.left a Z) :

                                                                                              Given a multifork, we may obtain a fork over ∏ᶜ I.left ⇉ ∏ᶜ I.right.

                                                                                              Equations
                                                                                                Instances For

                                                                                                  Given a fork over ∏ᶜ I.left ⇉ ∏ᶜ I.right, we may obtain a multifork.

                                                                                                  Equations
                                                                                                    Instances For

                                                                                                      The category of multiforks is equivalent to the category of forks over ∏ᶜ I.left ⇉ ∏ᶜ I.right. It then follows from CategoryTheory.IsLimit.ofPreservesConeTerminal (or reflects) that it preserves and reflects limit cones.

                                                                                                      Equations
                                                                                                        Instances For

                                                                                                          The maps to the cocone point of a multicofork from the objects on the right.

                                                                                                          Equations
                                                                                                            Instances For
                                                                                                              @[simp]
                                                                                                              theorem CategoryTheory.Limits.Multicofork.π_comp_hom {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} (K₁ K₂ : Multicofork I) (f : K₁ K₂) (b : J.R) :
                                                                                                              CategoryStruct.comp (K₁.π b) f.hom = K₂.π b
                                                                                                              @[simp]
                                                                                                              theorem CategoryTheory.Limits.Multicofork.π_comp_hom_assoc {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} (K₁ K₂ : Multicofork I) (f : K₁ K₂) (b : J.R) {Z : C} (h : K₂.pt Z) :
                                                                                                              def CategoryTheory.Limits.Multicofork.ofπ {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) (P : C) (π : (b : J.R) → I.right b P) (w : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (π (J.fst a)) = CategoryStruct.comp (I.snd a) (π (J.snd a))) :

                                                                                                              Construct a multicofork using a collection π of morphisms.

                                                                                                              Equations
                                                                                                                Instances For
                                                                                                                  @[simp]
                                                                                                                  theorem CategoryTheory.Limits.Multicofork.ofπ_pt {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) (P : C) (π : (b : J.R) → I.right b P) (w : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (π (J.fst a)) = CategoryStruct.comp (I.snd a) (π (J.snd a))) :
                                                                                                                  (ofπ I P π w).pt = P
                                                                                                                  @[simp]
                                                                                                                  theorem CategoryTheory.Limits.Multicofork.ofπ_ι_app {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) (P : C) (π : (b : J.R) → I.right b P) (w : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (π (J.fst a)) = CategoryStruct.comp (I.snd a) (π (J.snd a))) (x : WalkingMultispan J) :
                                                                                                                  (ofπ I P π w).ι.app x = match x with | WalkingMultispan.left a => CategoryStruct.comp (I.fst a) (π (J.fst a)) | WalkingMultispan.right a => π a
                                                                                                                  def CategoryTheory.Limits.Multicofork.IsColimit.mk {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} (K : Multicofork I) (desc : (E : Multicofork I) → K.pt E.pt) (fac : ∀ (E : Multicofork I) (i : J.R), CategoryStruct.comp (K.π i) (desc E) = E.π i) (uniq : ∀ (E : Multicofork I) (m : K.pt E.pt), (∀ (i : J.R), CategoryStruct.comp (K.π i) m = E.π i)m = desc E) :

                                                                                                                  This definition provides a convenient way to show that a multicofork is a colimit.

                                                                                                                  Equations
                                                                                                                    Instances For
                                                                                                                      @[simp]
                                                                                                                      theorem CategoryTheory.Limits.Multicofork.IsColimit.mk_desc {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} (K : Multicofork I) (desc : (E : Multicofork I) → K.pt E.pt) (fac : ∀ (E : Multicofork I) (i : J.R), CategoryStruct.comp (K.π i) (desc E) = E.π i) (uniq : ∀ (E : Multicofork I) (m : K.pt E.pt), (∀ (i : J.R), CategoryStruct.comp (K.π i) m = E.π i)m = desc E) (E : Multicofork I) :
                                                                                                                      (mk K desc fac uniq).desc E = desc E
                                                                                                                      theorem CategoryTheory.Limits.Multicofork.IsColimit.hom_ext {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} {K : Multicofork I} (hK : IsColimit K) {T : C} {f g : K.pt T} (h : ∀ (a : J.R), CategoryStruct.comp (K.π a) f = CategoryStruct.comp (K.π a) g) :
                                                                                                                      f = g
                                                                                                                      def CategoryTheory.Limits.Multicofork.IsColimit.desc {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} {K : Multicofork I} (hK : IsColimit K) {T : C} (k : (a : J.R) → I.right a T) (hk : ∀ (b : J.L), CategoryStruct.comp (I.fst b) (k (J.fst b)) = CategoryStruct.comp (I.snd b) (k (J.snd b))) :
                                                                                                                      K.pt T

                                                                                                                      Constructor for morphisms from the point of a colimit multicofork.

                                                                                                                      Equations
                                                                                                                        Instances For
                                                                                                                          @[simp]
                                                                                                                          theorem CategoryTheory.Limits.Multicofork.IsColimit.fac {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} {K : Multicofork I} (hK : IsColimit K) {T : C} (k : (a : J.R) → I.right a T) (hk : ∀ (b : J.L), CategoryStruct.comp (I.fst b) (k (J.fst b)) = CategoryStruct.comp (I.snd b) (k (J.snd b))) (a : J.R) :
                                                                                                                          CategoryStruct.comp (K.π a) (desc hK k hk) = k a
                                                                                                                          @[simp]
                                                                                                                          theorem CategoryTheory.Limits.Multicofork.IsColimit.fac_assoc {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} {K : Multicofork I} (hK : IsColimit K) {T : C} (k : (a : J.R) → I.right a T) (hk : ∀ (b : J.L), CategoryStruct.comp (I.fst b) (k (J.fst b)) = CategoryStruct.comp (I.snd b) (k (J.snd b))) (a : J.R) {Z : C} (h : T Z) :

                                                                                                                          Given a multicofork, we may obtain a cofork over ∐ I.left ⇉ ∐ I.right.

                                                                                                                          Equations
                                                                                                                            Instances For

                                                                                                                              Given a cofork over ∐ I.left ⇉ ∐ I.right, we may obtain a multicofork.

                                                                                                                              Equations
                                                                                                                                Instances For
                                                                                                                                  def CategoryTheory.Limits.Multicofork.ext {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} {K K' : Multicofork I} (e : K.pt K'.pt) (h : ∀ (i : J.R), CategoryStruct.comp (K.π i) e.hom = K'.π i := by cat_disch) :
                                                                                                                                  K K'

                                                                                                                                  Constructor for isomorphisms between multicoforks.

                                                                                                                                  Equations
                                                                                                                                    Instances For
                                                                                                                                      @[simp]
                                                                                                                                      theorem CategoryTheory.Limits.Multicofork.ext_hom_hom {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} {K K' : Multicofork I} (e : K.pt K'.pt) (h : ∀ (i : J.R), CategoryStruct.comp (K.π i) e.hom = K'.π i := by cat_disch) :
                                                                                                                                      (ext e h).hom.hom = e.hom
                                                                                                                                      @[simp]
                                                                                                                                      theorem CategoryTheory.Limits.Multicofork.ext_inv_hom {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} {K K' : Multicofork I} (e : K.pt K'.pt) (h : ∀ (i : J.R), CategoryStruct.comp (K.π i) e.hom = K'.π i := by cat_disch) :
                                                                                                                                      (ext e h).inv.hom = e.inv

                                                                                                                                      The category of multicoforks is equivalent to the category of coforks over ∐ I.left ⇉ ∐ I.right. It then follows from CategoryTheory.IsColimit.ofPreservesCoconeInitial (or reflects) that it preserves and reflects colimit cocones.

                                                                                                                                      Equations
                                                                                                                                        Instances For
                                                                                                                                          @[reducible, inline]

                                                                                                                                          For I : MulticospanIndex J C, we say that it has a multiequalizer if the associated multicospan has a limit.

                                                                                                                                          Equations
                                                                                                                                            Instances For
                                                                                                                                              @[reducible, inline]

                                                                                                                                              The multiequalizer of I : MulticospanIndex J C.

                                                                                                                                              Equations
                                                                                                                                                Instances For
                                                                                                                                                  @[reducible, inline]

                                                                                                                                                  For I : MultispanIndex J C, we say that it has a multicoequalizer if the associated multicospan has a limit.

                                                                                                                                                  Equations
                                                                                                                                                    Instances For
                                                                                                                                                      @[reducible, inline]

                                                                                                                                                      The multiecoqualizer of I : MultispanIndex J C.

                                                                                                                                                      Equations
                                                                                                                                                        Instances For
                                                                                                                                                          @[reducible, inline]

                                                                                                                                                          The canonical map from the multiequalizer to the objects on the left.

                                                                                                                                                          Equations
                                                                                                                                                            Instances For
                                                                                                                                                              @[reducible, inline]

                                                                                                                                                              The multifork associated to the multiequalizer.

                                                                                                                                                              Equations
                                                                                                                                                                Instances For
                                                                                                                                                                  @[reducible, inline]
                                                                                                                                                                  abbrev CategoryTheory.Limits.Multiequalizer.lift {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) [HasMultiequalizer I] (W : C) (k : (a : J.L) → W I.left a) (h : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) :

                                                                                                                                                                  Construct a morphism to the multiequalizer from its universal property.

                                                                                                                                                                  Equations
                                                                                                                                                                    Instances For
                                                                                                                                                                      theorem CategoryTheory.Limits.Multiequalizer.lift_ι {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) [HasMultiequalizer I] (W : C) (k : (a : J.L) → W I.left a) (h : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) (a : J.L) :
                                                                                                                                                                      CategoryStruct.comp (lift I W k h) (ι I a) = k a
                                                                                                                                                                      theorem CategoryTheory.Limits.Multiequalizer.lift_ι_assoc {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) [HasMultiequalizer I] (W : C) (k : (a : J.L) → W I.left a) (h : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) (a : J.L) {Z : C} (h✝ : I.left a Z) :

                                                                                                                                                                      The multiequalizer is isomorphic to the equalizer of ∏ᶜ I.left ⇉ ∏ᶜ I.right.

                                                                                                                                                                      Equations
                                                                                                                                                                        Instances For
                                                                                                                                                                          @[reducible, inline]

                                                                                                                                                                          The canonical map from the multiequalizer to the objects on the left.

                                                                                                                                                                          Equations
                                                                                                                                                                            Instances For
                                                                                                                                                                              @[reducible, inline]

                                                                                                                                                                              The multicofork associated to the multicoequalizer.

                                                                                                                                                                              Equations
                                                                                                                                                                                Instances For
                                                                                                                                                                                  @[reducible, inline]
                                                                                                                                                                                  abbrev CategoryTheory.Limits.Multicoequalizer.desc {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) [HasMulticoequalizer I] (W : C) (k : (b : J.R) → I.right b W) (h : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (k (J.fst a)) = CategoryStruct.comp (I.snd a) (k (J.snd a))) :

                                                                                                                                                                                  Construct a morphism from the multicoequalizer from its universal property.

                                                                                                                                                                                  Equations
                                                                                                                                                                                    Instances For
                                                                                                                                                                                      theorem CategoryTheory.Limits.Multicoequalizer.π_desc {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) [HasMulticoequalizer I] (W : C) (k : (b : J.R) → I.right b W) (h : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (k (J.fst a)) = CategoryStruct.comp (I.snd a) (k (J.snd a))) (b : J.R) :
                                                                                                                                                                                      CategoryStruct.comp (π I b) (desc I W k h) = k b
                                                                                                                                                                                      theorem CategoryTheory.Limits.Multicoequalizer.π_desc_assoc {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) [HasMulticoequalizer I] (W : C) (k : (b : J.R) → I.right b W) (h : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (k (J.fst a)) = CategoryStruct.comp (I.snd a) (k (J.snd a))) (b : J.R) {Z : C} (h✝ : W Z) :

                                                                                                                                                                                      The multicoequalizer is isomorphic to the coequalizer of ∐ I.left ⇉ ∐ I.right.

                                                                                                                                                                                      Equations
                                                                                                                                                                                        Instances For
                                                                                                                                                                                          @[simp]
                                                                                                                                                                                          theorem CategoryTheory.Limits.WalkingMultispan.inclusionOfLinearOrder_map (ι : Type w) [LinearOrder ι] {x y : WalkingMultispan (MultispanShape.ofLinearOrder ι)} (f : x y) :
                                                                                                                                                                                          (inclusionOfLinearOrder ι).map f = match x, y, f with | x, .(x), Hom.id .(x) => CategoryStruct.id (match x with | left a => left a | right b => right b) | .(left b), .(right ((MultispanShape.ofLinearOrder ι).fst b)), Hom.fst b => Hom.fst b | .(left b), .(right ((MultispanShape.ofLinearOrder ι).snd b)), Hom.snd b => Hom.snd b

                                                                                                                                                                                          Structure expressing a symmetry of I : MultispanIndex (.prod ι) C which allows to compare the corresponding multicoequalizer to the multicoequalizer of I.toLinearOrder.

                                                                                                                                                                                          Instances For

                                                                                                                                                                                            The multispan index for MultispanShape.ofLinearOrder ι deduced from a multispan index for MultispanShape.prod ι when ι is linearly ordered.

                                                                                                                                                                                            Equations
                                                                                                                                                                                              Instances For

                                                                                                                                                                                                Given a linearly ordered type ι and I : MultispanIndex (.prod ι) C, this is the isomorphism of functors between WalkingMultispan.inclusionOfLinearOrder ι ⋙ I.multispan and I.toLinearOrder.multispan.

                                                                                                                                                                                                Equations
                                                                                                                                                                                                  Instances For

                                                                                                                                                                                                    The multicofork for I.toLinearOrder deduced from a multicofork for I : MultispanIndex (.prod ι) C when ι is linearly ordered.

                                                                                                                                                                                                    Equations
                                                                                                                                                                                                      Instances For

                                                                                                                                                                                                        The multicofork for I : MultispanIndex (.prod ι) C deduced from a multicofork for I.toLinearOrder when ι is linearly ordered and I is symmetric.

                                                                                                                                                                                                        Equations
                                                                                                                                                                                                          Instances For

                                                                                                                                                                                                            If ι is a linearly ordered type, I : MultispanIndex (.prod ι) C, and c a colimit multicofork for I, then c.toLinearOrder is a colimit multicofork for I.toLinearOrder.

                                                                                                                                                                                                            Equations
                                                                                                                                                                                                              Instances For