Documentation

Mathlib.CategoryTheory.Monoidal.Cartesian.Cat

Chosen finite products in Cat #

This file proves that the cartesian product of a pair of categories agrees with the product in Cat, and provides the associated CartesianMonoidalCategory instance.

@[reducible, inline]

The chosen terminal object in Cat.

Equations
    Instances For

      The chosen terminal object in Cat is terminal.

      Equations
        Instances For

          The type of functors out of the chosen terminal category is equivalent to the type of objects in the target category. TODO: upgrade to an equivalence of categories.

          Equations
            Instances For

              The chosen product of categories C × D yields a product cone in Cat.

              Equations
                Instances For

                  The product cone in Cat is indeed a product.

                  Equations
                    Instances For
                      theorem CategoryTheory.Monoidal.associator_hom (X Y Z : Cat) :
                      (MonoidalCategoryStruct.associator X Y Z).hom = ((Prod.fst (X × Y) Z).comp (Prod.fst X Y)).prod' (((Prod.fst (X × Y) Z).comp (Prod.snd X Y)).prod' (Prod.snd (X × Y) Z))
                      theorem CategoryTheory.Monoidal.associator_inv (X Y Z : Cat) :
                      (MonoidalCategoryStruct.associator X Y Z).inv = ((Prod.fst (↑X) (Y × Z)).prod' ((Prod.snd (↑X) (Y × Z)).comp (Prod.fst Y Z))).prod' ((Prod.snd (↑X) (Y × Z)).comp (Prod.snd Y Z))