Documentation

Mathlib.CategoryTheory.Monoidal.Cartesian.FunctorCategory

Functor categories have chosen finite products #

If C is a category with chosen finite products, then so is J ⥤ C.

@[reducible, inline]

The chosen terminal object in J ⥤ C.

Equations
    Instances For

      The chosen terminal object in J ⥤ C is terminal.

      Equations
        Instances For

          The chosen binary product on J ⥤ C.

          Equations
            Instances For
              @[simp]
              @[simp]
              theorem CategoryTheory.Functor.chosenProd_map {J : Type u_1} {C : Type u_2} [Category.{u_5, u_1} J] [Category.{u_6, u_2} C] [CartesianMonoidalCategory C] (F₁ F₂ : Functor J C) {X✝ Y✝ : J} (φ : X✝ Y✝) :
              (F₁.chosenProd F₂).map φ = MonoidalCategoryStruct.tensorHom (F₁.map φ) (F₂.map φ)

              The first projection chosenProd F₁ F₂ ⟶ F₁.

              Equations
                Instances For

                  The second projection chosenProd F₁ F₂ ⟶ F₂.

                  Equations
                    Instances For

                      Functor.chosenProd F₁ F₂ is a binary product of F₁ and F₂.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Functor.Monoidal.tensorHom_app_fst {J : Type u_1} {C : Type u_2} [Category.{u_5, u_1} J] [Category.{u_6, u_2} C] [CartesianMonoidalCategory C] {F₁ F₁' F₂ F₂' : Functor J C} (f : F₁ F₁') (g : F₂ F₂') (j : J) :
                          @[simp]
                          theorem CategoryTheory.Functor.Monoidal.tensorHom_app_fst_assoc {J : Type u_1} {C : Type u_2} [Category.{u_5, u_1} J] [Category.{u_6, u_2} C] [CartesianMonoidalCategory C] {F₁ F₁' F₂ F₂' : Functor J C} (f : F₁ F₁') (g : F₂ F₂') (j : J) {Z : C} (h : F₁'.obj j Z) :
                          @[simp]
                          theorem CategoryTheory.Functor.Monoidal.tensorHom_app_snd {J : Type u_1} {C : Type u_2} [Category.{u_5, u_1} J] [Category.{u_6, u_2} C] [CartesianMonoidalCategory C] {F₁ F₁' F₂ F₂' : Functor J C} (f : F₁ F₁') (g : F₂ F₂') (j : J) :
                          @[simp]
                          theorem CategoryTheory.Functor.Monoidal.tensorHom_app_snd_assoc {J : Type u_1} {C : Type u_2} [Category.{u_5, u_1} J] [Category.{u_6, u_2} C] [CartesianMonoidalCategory C] {F₁ F₁' F₂ F₂' : Functor J C} (f : F₁ F₁') (g : F₂ F₂') (j : J) {Z : C} (h : F₂'.obj j Z) :

                          A finite-products-preserving functor distributes over the tensor product of functors.

                          Equations
                            Instances For

                              A tensor product of representable functors is representable.

                              Equations
                                Instances For