Documentation

Mathlib.CategoryTheory.Monoidal.Internal.Module

Mon_ (ModuleCat R) ≌ AlgCat R #

The category of internal monoid objects in ModuleCat R is equivalent to the category of "native" bundled R-algebras.

Moreover, this equivalence is compatible with the forgetful functors to ModuleCat R.

noncomputable instance ModuleCat.MonModuleEquivalenceAlgebra.Ring_of_Mon_ {R : Type u} [CommRing R] (A : ModuleCat R) [Mon_Class A] :
Ring A
Equations
    noncomputable instance ModuleCat.MonModuleEquivalenceAlgebra.Algebra_of_Mon_ {R : Type u} [CommRing R] (A : ModuleCat R) [Mon_Class A] :
    Algebra R A
    Equations

      Converting a monoid object in ModuleCat R to a bundled algebra.

      Equations
        Instances For
          @[simp]
          noncomputable def ModuleCat.MonModuleEquivalenceAlgebra.inverseObj {R : Type u} [CommRing R] (A : AlgCat R) :
          Mon_Class (of R A)

          Converting a bundled algebra to a monoid object in ModuleCat R.

          Equations
            Instances For

              Converting a bundled algebra to a monoid object in ModuleCat R.

              Equations
                Instances For

                  The category of internal monoid objects in ModuleCat R is equivalent to the category of "native" bundled R-algebras.

                  Equations
                    Instances For

                      The equivalence Mon_ (ModuleCat R) ≌ AlgCat R is naturally compatible with the forgetful functors to ModuleCat R.

                      Equations
                        Instances For