Documentation

Mathlib.CategoryTheory.Sites.Continuous

Continuous functors between sites. #

We define the notion of continuous functor between sites: these are functors F such that the precomposition with F.op preserves sheaves of types (and actually sheaves in any category).

Main definitions #

Main result #

References #

The image of a 1-pre-hypercover by a functor.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_p₁ {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (x✝ x✝¹ : E.I₀) (j : E.I₁ x✝ x✝¹) :
      (E.map F).p₁ j = F.map (E.p₁ j)
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_Y {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (x✝ x✝¹ : E.I₀) (j : E.I₁ x✝ x✝¹) :
      (E.map F).Y j = F.obj (E.Y j)
      @[simp]
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_f {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (i : E.I₀) :
      (E.map F).f i = F.map (E.f i)
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_I₁ {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (i₁ i₂ : E.I₀) :
      (E.map F).I₁ i₁ i₂ = E.I₁ i₁ i₂
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_X {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (i : E.I₀) :
      (E.map F).X i = F.obj (E.X i)
      @[simp]
      theorem CategoryTheory.PreOneHypercover.map_p₂ {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X : C} (E : PreOneHypercover X) (F : Functor C D) (x✝ x✝¹ : E.I₀) (j : E.I₁ x✝ x✝¹) :
      (E.map F).p₂ j = F.map (E.p₂ j)

      If F : C ⥤ D, P : Dᵒᵖ ⥤ A and E is a 1-pre-hypercover of an object of X, then (E.map F).multifork P is a limit iff E.multifork (F.op ⋙ P) is a limit.

      Equations
        Instances For

          A 1-hypercover in C is preserved by a functor F : C ⥤ D if the mapped 1-pre-hypercover in D is a 1-hypercover for the given topology on D.

          Instances

            Given a 1-hypercover E : J.OneHypercover X of an object of C, a functor F : C ⥤ D such that E.IsPreservedBy F K for a Grothendieck topology K on D, this is the image of E by F, as a 1-hypercover of F.obj X for K.

            Equations
              Instances For
                @[reducible, inline]

                The condition that a functor F : C ⥤ D sends 1-hypercovers for J : GrothendieckTopology C to 1-hypercovers for K : GrothendieckTopology D.

                Equations
                  Instances For

                    A functor F is continuous if the precomposition with F.op sends sheaves of Type t to sheaves.

                    Instances
                      theorem CategoryTheory.Functor.isContinuous_of_iso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F₁ F₂ : Functor C D} (e : F₁ F₂) (J : GrothendieckTopology C) (K : GrothendieckTopology D) [F₁.IsContinuous J K] :
                      F₂.IsContinuous J K
                      theorem CategoryTheory.Functor.isContinuous_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F₁ : Functor C D) (F₂ : Functor D E) (J : GrothendieckTopology C) (K : GrothendieckTopology D) (L : GrothendieckTopology E) [F₁.IsContinuous J K] [F₂.IsContinuous K L] :
                      (F₁.comp F₂).IsContinuous J L
                      theorem CategoryTheory.Functor.isContinuous_comp' {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F₁ : Functor C D} {F₂ : Functor D E} {F₁₂ : Functor C E} (e : F₁.comp F₂ F₁₂) (J : GrothendieckTopology C) (K : GrothendieckTopology D) (L : GrothendieckTopology E) [F₁.IsContinuous J K] [F₂.IsContinuous K L] :
                      F₁₂.IsContinuous J L

                      The induced functor Sheaf K A ⥤ Sheaf J A given by F.op ⋙ _ if F is a continuous functor.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Functor.sheafPushforwardContinuous_obj_val_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) (A : Type u) [Category.{t, u} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) [F.IsContinuous J K] ( : Sheaf K A) {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) :
                          ((F.sheafPushforwardContinuous A J K).obj ).val.map f = .val.map (F.map f.unop).op

                          The functor F.sheafPushforwardContinuous A J K : Sheaf K A ⥤ Sheaf J A is induced by the precomposition with F.op.

                          Equations
                            Instances For