Documentation

Mathlib.CategoryTheory.Sites.Subsheaf

Subsheaf of types #

We define the sub(pre)sheaf of a type valued presheaf.

Main results #

The sheafification of a subpresheaf as a subpresheaf. Note that this is a sheaf only when the whole presheaf is a sheaf.

Equations
    Instances For

      The lift of a presheaf morphism onto the sheafification subpresheaf.

      Equations
        Instances For

          A morphism factors through the sheafification of the image presheaf.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Subpresheaf.toRangeSheafify_app_coe {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) (X : Cᵒᵖ) (a✝ : F'.obj X) :
              ((toRangeSheafify J f).app X a✝) = ((toRange f).app X a✝)
              def CategoryTheory.Sheaf.image {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

              The image sheaf of a morphism between sheaves, defined to be the sheafification of image_presheaf.

              Equations
                Instances For
                  def CategoryTheory.Sheaf.toImage {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

                  A morphism factors through the image sheaf.

                  Equations
                    Instances For
                      def CategoryTheory.Sheaf.imageι {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :
                      image f F'

                      The inclusion of the image sheaf to the target.

                      Equations
                        Instances For
                          @[simp]

                          The mono factorization given by image_sheaf for a morphism.

                          Equations
                            Instances For
                              noncomputable def CategoryTheory.imageFactorization {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type (max v u))} (f : F F') :

                              The mono factorization given by image_sheaf for a morphism is an image.

                              Equations
                                Instances For