Documentation

Mathlib.CategoryTheory.Subpresheaf.Image

The image of a subpresheaf #

Given a morphism of presheaves of types p : F' ⟶ F, we define its range Subpresheaf.range p. More generally, if G' : Subpresheaf F', we define G'.image p : Subpresheaf F as the image of G' by f, and if G : Subpresheaf F, we define its preimage G.preimage f : Subpresheaf F'.

The range of a morphism of presheaves of types, as a subpresheaf of the target.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Subpresheaf.range_obj {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (p : F' F) (U : Cᵒᵖ) :
      (range p).obj U = Set.range (p.app U)
      def CategoryTheory.Subpresheaf.lift {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) {G : Subpresheaf F} (hf : range f G) :

      If the image of a morphism falls in a subpresheaf, then the morphism factors through it.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Subpresheaf.lift_app_coe {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) {G : Subpresheaf F} (hf : range f G) (U : Cᵒᵖ) (x : F'.obj U) :
          ((lift f hf).app U x) = f.app U x
          @[simp]
          theorem CategoryTheory.Subpresheaf.lift_ι {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) {G : Subpresheaf F} (hf : range f G) :
          @[simp]

          Given a morphism p : F' ⟶ F of presheaves of types, this is the morphism from F' to its range.

          Equations
            Instances For
              theorem CategoryTheory.Subpresheaf.toRange_app_val {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (p : F' F) {i : Cᵒᵖ} (x : F'.obj i) :
              ((toRange p).app i x) = p.app i x
              theorem CategoryTheory.Subpresheaf.range_comp_le {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (f : F F') (g : F' F'') :

              The image of a subpresheaf by a morphism of presheaves of types.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Subpresheaf.image_obj {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F F') (i : Cᵒᵖ) :
                  (G.image f).obj i = f.app i '' G.obj i
                  @[simp]
                  theorem CategoryTheory.Subpresheaf.image_iSup {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} {ι : Type u_1} (G : ιSubpresheaf F) (f : F F') :
                  (⨆ (i : ι), G i).image f = ⨆ (i : ι), (G i).image f
                  theorem CategoryTheory.Subpresheaf.image_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F F') (g : F' F'') :
                  theorem CategoryTheory.Subpresheaf.range_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (f : F F') (g : F' F'') :

                  The preimage of a subpresheaf by a morphism of presheaves of types.

                  Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Subpresheaf.preimage_obj {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (p : F' F) (n : Cᵒᵖ) :
                      (G.preimage p).obj n = p.app n ⁻¹' G.obj n
                      theorem CategoryTheory.Subpresheaf.preimage_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F'' F') (g : F' F) :
                      theorem CategoryTheory.Subpresheaf.image_le_iff {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F F') (G' : Subpresheaf F') :
                      G.image f G' G G'.preimage f

                      Given a morphism p : F' ⟶ F of presheaves of types and G : Subpresheaf F, this is the morphism from the preimage of G by p to G.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Subpresheaf.preimage_image_of_epi {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (p : F' F) [hp : Epi p] :
                          (G.preimage p).image p = G