Documentation

Mathlib.Combinatorics.SetFamily.Intersecting

Intersecting families #

This file defines intersecting families and proves their basic properties.

Main declarations #

References #

def Set.Intersecting {α : Type u_1} [SemilatticeInf α] [OrderBot α] (s : Set α) :

A set family is intersecting if every pair of elements is non-disjoint.

Equations
    Instances For
      theorem Set.Intersecting.mono {α : Type u_1} [SemilatticeInf α] [OrderBot α] {s t : Set α} (h : t s) (hs : s.Intersecting) :
      theorem Set.Intersecting.bot_notMem {α : Type u_1} [SemilatticeInf α] [OrderBot α] {s : Set α} (hs : s.Intersecting) :
      s
      @[deprecated Set.Intersecting.bot_notMem (since := "2025-05-24")]
      theorem Set.Intersecting.not_bot_mem {α : Type u_1} [SemilatticeInf α] [OrderBot α] {s : Set α} (hs : s.Intersecting) :
      s

      Alias of Set.Intersecting.bot_notMem.

      theorem Set.Intersecting.ne_bot {α : Type u_1} [SemilatticeInf α] [OrderBot α] {s : Set α} {a : α} (hs : s.Intersecting) (ha : a s) :
      @[simp]
      theorem Set.intersecting_singleton {α : Type u_1} [SemilatticeInf α] [OrderBot α] {a : α} :
      theorem Set.Intersecting.insert {α : Type u_1} [SemilatticeInf α] [OrderBot α] {s : Set α} {a : α} (hs : s.Intersecting) (ha : a ) (h : bs, ¬Disjoint a b) :
      theorem Set.intersecting_insert {α : Type u_1} [SemilatticeInf α] [OrderBot α] {s : Set α} {a : α} :
      theorem Set.Intersecting.isUpperSet {α : Type u_1} [SemilatticeInf α] [OrderBot α] {s : Set α} (hs : s.Intersecting) (h : ∀ (t : Set α), t.Intersectings ts = t) :

      Maximal intersecting families are upper sets.

      theorem Set.Intersecting.isUpperSet' {α : Type u_1} [SemilatticeInf α] [OrderBot α] {s : Finset α} (hs : (↑s).Intersecting) (h : ∀ (t : Finset α), (↑t).Intersectings ts = t) :

      Maximal intersecting families are upper sets. Finset version.

      theorem Set.Intersecting.exists_mem_set {α : Type u_1} {𝒜 : Set (Set α)} (h𝒜 : 𝒜.Intersecting) {s t : Set α} (hs : s 𝒜) (ht : t 𝒜) :
      as, a t
      theorem Set.Intersecting.exists_mem_finset {α : Type u_1} [DecidableEq α] {𝒜 : Set (Finset α)} (h𝒜 : 𝒜.Intersecting) {s t : Finset α} (hs : s 𝒜) (ht : t 𝒜) :
      as, a t
      theorem Set.Intersecting.compl_notMem {α : Type u_1} [BooleanAlgebra α] {s : Set α} (hs : s.Intersecting) {a : α} (ha : a s) :
      as
      @[deprecated Set.Intersecting.compl_notMem (since := "2025-05-24")]
      theorem Set.Intersecting.not_compl_mem {α : Type u_1} [BooleanAlgebra α] {s : Set α} (hs : s.Intersecting) {a : α} (ha : a s) :
      as

      Alias of Set.Intersecting.compl_notMem.

      theorem Set.Intersecting.notMem {α : Type u_1} [BooleanAlgebra α] {s : Set α} (hs : s.Intersecting) {a : α} (ha : a s) :
      as
      @[deprecated Set.Intersecting.notMem (since := "2025-05-23")]
      theorem Set.Intersecting.not_mem {α : Type u_1} [BooleanAlgebra α] {s : Set α} (hs : s.Intersecting) {a : α} (ha : a s) :
      as

      Alias of Set.Intersecting.notMem.

      theorem Set.Intersecting.disjoint_map_compl {α : Type u_1} [BooleanAlgebra α] {s : Finset α} (hs : (↑s).Intersecting) :
      Disjoint s (Finset.map { toFun := compl, inj' := } s)
      theorem Set.Intersecting.card_le {α : Type u_1} [BooleanAlgebra α] [Fintype α] {s : Finset α} (hs : (↑s).Intersecting) :
      theorem Set.Intersecting.is_max_iff_card_eq {α : Type u_1} [BooleanAlgebra α] [Nontrivial α] [Fintype α] {s : Finset α} (hs : (↑s).Intersecting) :
      (∀ (t : Finset α), (↑t).Intersectings ts = t) 2 * s.card = Fintype.card α
      theorem Set.Intersecting.exists_card_eq {α : Type u_1} [BooleanAlgebra α] [Nontrivial α] [Fintype α] {s : Finset α} (hs : (↑s).Intersecting) :
      ∃ (t : Finset α), s t 2 * t.card = Fintype.card α (↑t).Intersecting