Documentation

Mathlib.Combinatorics.SimpleGraph.CompleteMultipartite

Complete Multipartite Graphs #

A graph is complete multipartite iff non-adjacency is transitive.

Main declarations #

G is IsCompleteMultipartite iff non-adjacency is transitive

Equations
    Instances For

      The setoid given by non-adjacency

      Equations
        Instances For

          The graph isomorphism from a graph G that IsCompleteMultipartite to the corresponding completeMultipartiteGraph (see also isCompleteMultipartite_iff)

          Equations
            Instances For
              theorem SimpleGraph.isCompleteMultipartite_iff {α : Type u} {G : SimpleGraph α} :
              G.IsCompleteMultipartite ∃ (ι : Type u) (V : ιType u) (_ : ∀ (i : ι), Nonempty (V i)), Nonempty (G ≃g completeMultipartiteGraph V)
              structure SimpleGraph.IsPathGraph3Compl {α : Type u} (G : SimpleGraph α) (v w₁ w₂ : α) :

              The vertices v, w₁, w₂ form an IsPathGraph3Compl in G iff w₁w₂ is the only edge present between these three vertices. It is a witness to the non-complete-multipartite-ness of G (see not_isCompleteMultipartite_iff_exists_isPathGraph3Compl). This structure is an explicit way of saying that the induced graph on {v, w₁, w₂} is the complement of P3.

              • adj : G.Adj w₁ w₂
              • not_adj_fst : ¬G.Adj v w₁
              • not_adj_snd : ¬G.Adj v w₂
              Instances For
                theorem SimpleGraph.IsPathGraph3Compl.ne_fst {α : Type u} {G : SimpleGraph α} {v w₁ w₂ : α} (h2 : G.IsPathGraph3Compl v w₁ w₂) :
                v w₁
                theorem SimpleGraph.IsPathGraph3Compl.ne_snd {α : Type u} {G : SimpleGraph α} {v w₁ w₂ : α} (h2 : G.IsPathGraph3Compl v w₁ w₂) :
                v w₂
                theorem SimpleGraph.IsPathGraph3Compl.fst_ne_snd {α : Type u} {G : SimpleGraph α} {v w₁ w₂ : α} (h2 : G.IsPathGraph3Compl v w₁ w₂) :
                w₁ w₂
                theorem SimpleGraph.IsPathGraph3Compl.symm {α : Type u} {G : SimpleGraph α} {v w₁ w₂ : α} (h : G.IsPathGraph3Compl v w₁ w₂) :
                G.IsPathGraph3Compl v w₂ w₁
                theorem SimpleGraph.exists_isPathGraph3Compl_of_not_isCompleteMultipartite {α : Type u} {G : SimpleGraph α} (h : ¬G.IsCompleteMultipartite) :
                ∃ (v : α) (w₁ : α) (w₂ : α), G.IsPathGraph3Compl v w₁ w₂
                def SimpleGraph.IsPathGraph3Compl.pathGraph3ComplEmbedding {α : Type u} {G : SimpleGraph α} {v w₁ w₂ : α} (h : G.IsPathGraph3Compl v w₁ w₂) :

                Any IsPathGraph3Compl in G gives rise to a graph embedding of the complement of the path graph

                Equations
                  Instances For

                    Embedding of (pathGraph 3)ᶜ into G that is not complete-multipartite.

                    Equations
                      Instances For