Finite intervals of finitely supported functions #
This file provides the LocallyFiniteOrder
instance for Π₀ i, α i
when α
itself is locally
finite and calculates the cardinality of its finite intervals.
@[simp]
theorem
Finset.mem_dfinsupp_iff_of_support_subset
{ι : Type u_1}
{α : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → Zero (α i)]
{s : Finset ι}
{f : Π₀ (i : ι), α i}
[(i : ι) → DecidableEq (α i)]
{t : Π₀ (i : ι), Finset (α i)}
(ht : t.support ⊆ s)
:
When t
is supported on s
, f ∈ s.dfinsupp t
precisely means that f
is pointwise in t
.
def
DFinsupp.rangeIcc
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(f g : Π₀ (i : ι), α i)
:
Pointwise Finset.Icc
bundled as a DFinsupp
.
Equations
Instances For
@[simp]
theorem
DFinsupp.rangeIcc_apply
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(f g : Π₀ (i : ι), α i)
(i : ι)
:
theorem
DFinsupp.mem_rangeIcc_apply_iff
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
{f g : Π₀ (i : ι), α i}
{i : ι}
{a : α i}
:
theorem
DFinsupp.support_rangeIcc_subset
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
{f g : Π₀ (i : ι), α i}
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
:
def
DFinsupp.pi
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
(f : Π₀ (i : ι), Finset (α i))
:
Given a finitely supported function f : Π₀ i, Finset (α i)
, one can define the finset
f.pi
of all finitely supported functions whose value at i
is in f i
for all i
.
Equations
Instances For
@[simp]
theorem
DFinsupp.card_pi
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
(f : Π₀ (i : ι), Finset (α i))
:
instance
DFinsupp.instLocallyFiniteOrder
{ι : Type u_1}
{α : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → Zero (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
:
LocallyFiniteOrder (Π₀ (i : ι), α i)
Equations
theorem
DFinsupp.Icc_eq
{ι : Type u_1}
{α : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → Zero (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(f g : Π₀ (i : ι), α i)
:
theorem
DFinsupp.card_Icc
{ι : Type u_1}
{α : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → Zero (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(f g : Π₀ (i : ι), α i)
:
theorem
DFinsupp.card_Ico
{ι : Type u_1}
{α : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → Zero (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(f g : Π₀ (i : ι), α i)
:
theorem
DFinsupp.card_Ioc
{ι : Type u_1}
{α : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → Zero (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(f g : Π₀ (i : ι), α i)
:
theorem
DFinsupp.card_Ioo
{ι : Type u_1}
{α : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → Zero (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(f g : Π₀ (i : ι), α i)
:
theorem
DFinsupp.card_uIcc
{ι : Type u_1}
{α : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → Lattice (α i)]
[(i : ι) → Zero (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(f g : Π₀ (i : ι), α i)
:
theorem
DFinsupp.card_Iic
{ι : Type u_1}
{α : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → AddCommMonoid (α i)]
[(i : ι) → PartialOrder (α i)]
[∀ (i : ι), CanonicallyOrderedAdd (α i)]
[(i : ι) → OrderBot (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(f : Π₀ (i : ι), α i)
:
theorem
DFinsupp.card_Iio
{ι : Type u_1}
{α : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → AddCommMonoid (α i)]
[(i : ι) → PartialOrder (α i)]
[∀ (i : ι), CanonicallyOrderedAdd (α i)]
[(i : ι) → OrderBot (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(f : Π₀ (i : ι), α i)
: