Documentation

Mathlib.Data.DFinsupp.Lex

Lexicographic order on finitely supported dependent functions #

This file defines the lexicographic order on DFinsupp.

def DFinsupp.Lex {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] (r : ιιProp) (s : (i : ι) → α iα iProp) (x y : Π₀ (i : ι), α i) :

DFinsupp.Lex r s is the lexicographic relation on Π₀ i, α i, where ι is ordered by r, and α i is ordered by s i. The type synonym Lex (Π₀ i, α i) has an order given by DFinsupp.Lex (· < ·) (· < ·).

Equations
    Instances For
      theorem Pi.lex_eq_dfinsupp_lex {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] {r : ιιProp} {s : (i : ι) → α iα iProp} (a b : Π₀ (i : ι), α i) :
      Pi.Lex r (fun {i : ι} => s i) a b = DFinsupp.Lex r s a b
      theorem DFinsupp.lex_def {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] {r : ιιProp} {s : (i : ι) → α iα iProp} {a b : Π₀ (i : ι), α i} :
      DFinsupp.Lex r s a b ∃ (j : ι), (∀ (d : ι), r d ja d = b d) s j (a j) (b j)
      instance DFinsupp.instLTLex {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LT ι] [(i : ι) → LT (α i)] :
      LT (Lex (Π₀ (i : ι), α i))
      Equations
        theorem DFinsupp.lex_lt_of_lt_of_preorder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [(i : ι) → Preorder (α i)] (r : ιιProp) [IsStrictOrder ι r] {x y : Π₀ (i : ι), α i} (hlt : x < y) :
        ∃ (i : ι), (∀ (j : ι), r j ix j y j y j x j) x i < y i
        theorem DFinsupp.lex_lt_of_lt {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [(i : ι) → PartialOrder (α i)] (r : ιιProp) [IsStrictOrder ι r] {x y : Π₀ (i : ι), α i} (hlt : x < y) :
        Pi.Lex r (fun {i : ι} (x1 x2 : α i) => x1 < x2) x y
        instance DFinsupp.Lex.isStrictOrder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] :
        IsStrictOrder (Lex (Π₀ (i : ι), α i)) fun (x1 x2 : Lex (Π₀ (i : ι), α i)) => x1 < x2
        instance DFinsupp.Lex.partialOrder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] :
        PartialOrder (Lex (Π₀ (i : ι), α i))

        The partial order on DFinsupps obtained by the lexicographic ordering. See DFinsupp.Lex.linearOrder for a proof that this partial order is in fact linear.

        Equations
          theorem DFinsupp.Lex.decidableLE_def {ι : Type u_3} {α : ιType u_4} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
          decidableLE = DFinsupp.lt_trichotomy_rec✝ (fun {f g : Π₀ (i : ι), α i} (h : toLex f < toLex g) => isTrue ) (fun {f g : Π₀ (i : ι), α i} (h : toLex f = toLex g) => isTrue ) fun {f g : Π₀ (i : ι), α i} (h : toLex g < toLex f) => isFalse
          @[irreducible]
          def DFinsupp.Lex.decidableLE {ι : Type u_3} {α : ιType u_4} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
          DecidableLE (Lex (Π₀ (i : ι), α i))

          The less-or-equal relation for the lexicographic ordering is decidable.

          Equations
            Instances For
              theorem DFinsupp.Lex.decidableLT_def {ι : Type u_3} {α : ιType u_4} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
              decidableLT = DFinsupp.lt_trichotomy_rec✝ (fun {f g : Π₀ (i : ι), α i} (h : toLex f < toLex g) => isTrue h) (fun {f g : Π₀ (i : ι), α i} (h : toLex f = toLex g) => isFalse ) fun {f g : Π₀ (i : ι), α i} (h : toLex g < toLex f) => isFalse
              @[irreducible]
              def DFinsupp.Lex.decidableLT {ι : Type u_3} {α : ιType u_4} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
              DecidableLT (Lex (Π₀ (i : ι), α i))

              The less-than relation for the lexicographic ordering is decidable.

              Equations
                Instances For
                  instance DFinsupp.Lex.linearOrder {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → LinearOrder (α i)] :
                  LinearOrder (Lex (Π₀ (i : ι), α i))

                  The linear order on DFinsupps obtained by the lexicographic ordering.

                  Equations
                    theorem DFinsupp.toLex_monotone {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] :
                    theorem DFinsupp.lt_of_forall_lt_of_lt {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [LinearOrder ι] [(i : ι) → PartialOrder (α i)] (a b : Lex (Π₀ (i : ι), α i)) (i : ι) :
                    (∀ j < i, (ofLex a) j = (ofLex b) j)(ofLex a) i < (ofLex b) ia < b

                    We are about to sneak in a hypothesis that might appear to be too strong. We assume AddLeftStrictMono (covariant with strict inequality <) also when proving the one with the weak inequality . This is actually necessary: addition on Lex (Π₀ i, α i) may fail to be monotone, when it is "just" monotone on α i.

                    instance DFinsupp.Lex.addLeftStrictMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddLeftStrictMono (α i)] :
                    AddLeftStrictMono (Lex (Π₀ (i : ι), α i))
                    instance DFinsupp.Lex.addLeftMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddLeftStrictMono (α i)] :
                    AddLeftMono (Lex (Π₀ (i : ι), α i))
                    instance DFinsupp.Lex.addRightStrictMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddRightStrictMono (α i)] :
                    AddRightStrictMono (Lex (Π₀ (i : ι), α i))
                    instance DFinsupp.Lex.addRightMono {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddMonoid (α i)] [(i : ι) → LinearOrder (α i)] [∀ (i : ι), AddRightStrictMono (α i)] :
                    AddRightMono (Lex (Π₀ (i : ι), α i))
                    instance DFinsupp.Lex.orderBot {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddCommMonoid (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), CanonicallyOrderedAdd (α i)] :
                    OrderBot (Lex (Π₀ (i : ι), α i))
                    Equations
                      instance DFinsupp.Lex.isOrderedCancelAddMonoid {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddCommMonoid (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), IsOrderedCancelAddMonoid (α i)] :
                      instance DFinsupp.Lex.isOrderedAddMonoid {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → AddCommGroup (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), IsOrderedAddMonoid (α i)] :
                      IsOrderedAddMonoid (Lex (Π₀ (i : ι), α i))