Documentation

Mathlib.Data.Real.ENatENNReal

Coercion from ℕ∞ to ℝ≥0∞ #

In this file we define a coercion from ℕ∞ to ℝ≥0∞ and prove some basic lemmas about this map.

Coercion from ℕ∞ to ℝ≥0∞.

Equations
    Instances For

      Coercion ℕ∞ → ℝ≥0∞ as an OrderEmbedding.

      Equations
        Instances For

          Coercion ℕ∞ → ℝ≥0∞ as a ring homomorphism.

          Equations
            Instances For
              @[simp]
              @[simp]
              theorem ENat.toENNReal_coe (n : ) :
              n = n
              @[simp]
              theorem ENat.toENNReal_inj {m n : ℕ∞} :
              m = n m = n
              @[simp]
              theorem ENat.toENNReal_eq_top {n : ℕ∞} :
              n = n =
              @[simp]
              theorem ENat.toENNReal_le {m n : ℕ∞} :
              m n m n
              @[simp]
              theorem ENat.toENNReal_lt {m n : ℕ∞} :
              m < n m < n
              @[simp]
              theorem ENat.toENNReal_lt_top {n : ℕ∞} :
              n < n <
              @[simp]
              theorem ENat.toENNReal_zero :
              0 = 0
              @[simp]
              theorem ENat.toENNReal_add (m n : ℕ∞) :
              ↑(m + n) = m + n
              @[simp]
              theorem ENat.toENNReal_one :
              1 = 1
              @[simp]
              theorem ENat.toENNReal_mul (m n : ℕ∞) :
              ↑(m * n) = m * n
              @[simp]
              theorem ENat.toENNReal_pow (x : ℕ∞) (n : ) :
              ↑(x ^ n) = x ^ n
              @[simp]
              theorem ENat.toENNReal_min (m n : ℕ∞) :
              (min m n) = min m n
              @[simp]
              theorem ENat.toENNReal_max (m n : ℕ∞) :
              (max m n) = max m n
              @[simp]
              theorem ENat.toENNReal_sub (m n : ℕ∞) :
              ↑(m - n) = m - n