Documentation

Mathlib.Data.Semiquot

Semiquotients #

A data type for semiquotients, which are classically equivalent to nonempty sets, but are useful for programming; the idea is that a semiquotient set S represents some (particular but unknown) element of S. This can be used to model nondeterministic functions, which return something in a range of values (represented by the predicate S) but are not completely determined.

structure Semiquot (α : Type u_1) :
Type u_1

A member of Semiquot α is classically a nonempty Set α, and in the VM is represented by an element of α; the relation between these is that the VM element is required to be a member of the set s. The specific element of s that the VM computes is hidden by a quotient construction, allowing for the representation of nondeterministic functions.

  • mk' :: (
    • s : Set α

      Set containing some element of α

    • val : Trunc self.s

      Assertion of non-emptiness via Trunc

  • )
Instances For
    instance Semiquot.instMembership {α : Type u_1} :
    Equations
      def Semiquot.mk {α : Type u_1} {a : α} {s : Set α} (h : a s) :

      Construct a Semiquot α from h : a ∈ s where s : Set α.

      Equations
        Instances For
          theorem Semiquot.ext_s {α : Type u_1} {q₁ q₂ : Semiquot α} :
          q₁ = q₂ q₁.s = q₂.s
          theorem Semiquot.ext {α : Type u_1} {q₁ q₂ : Semiquot α} :
          q₁ = q₂ ∀ (a : α), a q₁ a q₂
          theorem Semiquot.exists_mem {α : Type u_1} (q : Semiquot α) :
          ∃ (a : α), a q
          theorem Semiquot.eq_mk_of_mem {α : Type u_1} {q : Semiquot α} {a : α} (h : a q) :
          q = mk h
          theorem Semiquot.nonempty {α : Type u_1} (q : Semiquot α) :
          def Semiquot.pure {α : Type u_1} (a : α) :

          pure a is a reinterpreted as an unspecified element of {a}.

          Equations
            Instances For
              @[simp]
              theorem Semiquot.mem_pure' {α : Type u_1} {a b : α} :
              def Semiquot.blur' {α : Type u_1} (q : Semiquot α) {s : Set α} (h : q.s s) :

              Replace s in a Semiquot with a superset.

              Equations
                Instances For
                  def Semiquot.blur {α : Type u_1} (s : Set α) (q : Semiquot α) :

                  Replace s in a q : Semiquot α with a union s ∪ q.s

                  Equations
                    Instances For
                      theorem Semiquot.blur_eq_blur' {α : Type u_1} (q : Semiquot α) (s : Set α) (h : q.s s) :
                      blur s q = q.blur' h
                      @[simp]
                      theorem Semiquot.mem_blur' {α : Type u_1} (q : Semiquot α) {s : Set α} (h : q.s s) {a : α} :
                      a q.blur' h a s
                      def Semiquot.ofTrunc {α : Type u_1} (q : Trunc α) :

                      Convert a Trunc α to a Semiquot α.

                      Equations
                        Instances For
                          def Semiquot.toTrunc {α : Type u_1} (q : Semiquot α) :

                          Convert a Semiquot α to a Trunc α.

                          Equations
                            Instances For
                              def Semiquot.liftOn {α : Type u_1} {β : Type u_2} (q : Semiquot α) (f : αβ) (h : aq, bq, f a = f b) :
                              β

                              If f is a constant on q.s, then q.liftOn f is the value of f at any point of q.

                              Equations
                                Instances For
                                  theorem Semiquot.liftOn_ofMem {α : Type u_1} {β : Type u_2} (q : Semiquot α) (f : αβ) (h : aq, bq, f a = f b) (a : α) (aq : a q) :
                                  q.liftOn f h = f a
                                  def Semiquot.map {α : Type u_1} {β : Type u_2} (f : αβ) (q : Semiquot α) :

                                  Apply a function to the unknown value stored in a Semiquot α.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem Semiquot.mem_map {α : Type u_1} {β : Type u_2} (f : αβ) (q : Semiquot α) (b : β) :
                                      b map f q aq, f a = b
                                      def Semiquot.bind {α : Type u_1} {β : Type u_2} (q : Semiquot α) (f : αSemiquot β) :

                                      Apply a function returning a Semiquot to a Semiquot.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem Semiquot.mem_bind {α : Type u_1} {β : Type u_2} (q : Semiquot α) (f : αSemiquot β) (b : β) :
                                          b q.bind f aq, b f a
                                          @[simp]
                                          theorem Semiquot.map_def {α β : Type u_1} :
                                          (fun (x1 : αβ) (x2 : Semiquot α) => x1 <$> x2) = map
                                          @[simp]
                                          theorem Semiquot.bind_def {α β : Type u_1} :
                                          (fun (x1 : Semiquot α) (x2 : αSemiquot β) => x1 >>= x2) = bind
                                          @[simp]
                                          theorem Semiquot.mem_pure {α : Type u_1} {a b : α} :
                                          a pure b a = b
                                          theorem Semiquot.mem_pure_self {α : Type u_1} (a : α) :
                                          a pure a
                                          @[simp]
                                          theorem Semiquot.pure_inj {α : Type u_1} {a b : α} :
                                          pure a = pure b a = b
                                          instance Semiquot.instLE {α : Type u_1} :
                                          Equations
                                            Equations
                                              @[simp]
                                              theorem Semiquot.pure_le {α : Type u_1} {a : α} {s : Semiquot α} :
                                              pure a s a s
                                              def Semiquot.IsPure {α : Type u_1} (q : Semiquot α) :

                                              Assert that a Semiquot contains only one possible value.

                                              Equations
                                                Instances For
                                                  def Semiquot.get {α : Type u_1} (q : Semiquot α) (h : q.IsPure) :
                                                  α

                                                  Extract the value from an IsPure semiquotient.

                                                  Equations
                                                    Instances For
                                                      theorem Semiquot.get_mem {α : Type u_1} {q : Semiquot α} (p : q.IsPure) :
                                                      q.get p q
                                                      theorem Semiquot.eq_pure {α : Type u_1} {q : Semiquot α} (p : q.IsPure) :
                                                      q = pure (q.get p)
                                                      @[simp]
                                                      theorem Semiquot.pure_isPure {α : Type u_1} (a : α) :
                                                      theorem Semiquot.isPure_iff {α : Type u_1} {s : Semiquot α} :
                                                      s.IsPure ∃ (a : α), s = pure a
                                                      theorem Semiquot.IsPure.mono {α : Type u_1} {s t : Semiquot α} (st : s t) (h : t.IsPure) :
                                                      theorem Semiquot.IsPure.min {α : Type u_1} {s t : Semiquot α} (h : t.IsPure) :
                                                      s t s = t
                                                      def Semiquot.univ {α : Type u_1} [Inhabited α] :

                                                      univ : Semiquot α represents an unspecified element of univ : Set α.

                                                      Equations
                                                        Instances For
                                                          instance Semiquot.instInhabited {α : Type u_1} [Inhabited α] :
                                                          Equations
                                                            @[simp]
                                                            theorem Semiquot.mem_univ {α : Type u_1} [Inhabited α] (a : α) :
                                                            theorem Semiquot.univ_unique {α : Type u_1} (I J : Inhabited α) :