Documentation

Mathlib.Data.Sigma.Interval

Finite intervals in a sigma type #

This file provides the LocallyFiniteOrder instance for the disjoint sum of orders Σ i, α i and calculates the cardinality of its finite intervals.

TODO #

Do the same for the lexicographical order

Disjoint sum of orders #

instance Sigma.instLocallyFiniteOrder {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] :
LocallyFiniteOrder ((i : ι) × α i)
Equations
    theorem Sigma.card_Icc {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (a b : (i : ι) × α i) :
    (Finset.Icc a b).card = if h : a.fst = b.fst then (Finset.Icc (h a.snd) b.snd).card else 0
    theorem Sigma.card_Ico {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (a b : (i : ι) × α i) :
    (Finset.Ico a b).card = if h : a.fst = b.fst then (Finset.Ico (h a.snd) b.snd).card else 0
    theorem Sigma.card_Ioc {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (a b : (i : ι) × α i) :
    (Finset.Ioc a b).card = if h : a.fst = b.fst then (Finset.Ioc (h a.snd) b.snd).card else 0
    theorem Sigma.card_Ioo {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (a b : (i : ι) × α i) :
    (Finset.Ioo a b).card = if h : a.fst = b.fst then (Finset.Ioo (h a.snd) b.snd).card else 0
    @[simp]
    theorem Sigma.Icc_mk_mk {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (i : ι) (a b : α i) :
    @[simp]
    theorem Sigma.Ico_mk_mk {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (i : ι) (a b : α i) :
    @[simp]
    theorem Sigma.Ioc_mk_mk {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (i : ι) (a b : α i) :
    @[simp]
    theorem Sigma.Ioo_mk_mk {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (i : ι) (a b : α i) :
    instance Sigma.instLocallyFiniteOrderBot {ι : Type u_1} {α : ιType u_2} [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrderBot (α i)] :
    LocallyFiniteOrderBot ((i : ι) × α i)
    Equations
      @[simp]
      theorem Sigma.Iic_mk {ι : Type u_1} {α : ιType u_2} [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrderBot (α i)] (i : ι) (a : α i) :
      @[simp]
      theorem Sigma.Iio_mk {ι : Type u_1} {α : ιType u_2} [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrderBot (α i)] (i : ι) (a : α i) :
      instance Sigma.instLocallyFiniteOrderTop {ι : Type u_1} {α : ιType u_2} [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrderTop (α i)] :
      LocallyFiniteOrderTop ((i : ι) × α i)
      Equations
        @[simp]
        theorem Sigma.Ici_mk {ι : Type u_1} {α : ιType u_2} [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrderTop (α i)] (i : ι) (a : α i) :
        @[simp]
        theorem Sigma.Ioi_mk {ι : Type u_1} {α : ιType u_2} [(i : ι) → Preorder (α i)] [(i : ι) → LocallyFiniteOrderTop (α i)] (i : ι) (a : α i) :