Polynomials over finite fields #
A polynomial over the integers is divisible by n : ℕ
if and only if it is zero over ZMod n
.
theorem
MvPolynomial.frobenius_zmod
{σ : Type u_1}
{p : ℕ}
[Fact (Nat.Prime p)]
(f : MvPolynomial σ (ZMod p))
:
def
MvPolynomial.indicator
{K : Type u_1}
{σ : Type u_2}
[Fintype K]
[Fintype σ]
[CommRing K]
(a : σ → K)
:
MvPolynomial σ K
Over a field, this is the indicator function as an MvPolynomial
.
Equations
Instances For
MvPolynomial.eval
as a K
-linear map.
Equations
Instances For
@[simp]
theorem
MvPolynomial.evalₗ_apply
(K : Type u_1)
(σ : Type u_2)
[CommSemiring K]
(p : MvPolynomial σ K)
(e : σ → K)
:
noncomputable instance
MvPolynomial.instAddCommGroupR
(σ K : Type u)
[Fintype K]
[CommRing K]
:
AddCommGroup (R σ K)
Equations
Evaluation in the MvPolynomial.R
subtype.
Equations
Instances For
instance
MvPolynomial.instFiniteDimensionalROfFinite
(σ K : Type u)
[Fintype K]
[Field K]
[Finite σ]
:
FiniteDimensional K (R σ K)
theorem
MvPolynomial.eq_zero_of_eval_eq_zero
(σ K : Type u)
[Fintype K]
[Field K]
[Finite σ]
(p : MvPolynomial σ K)
(h : ∀ (v : σ → K), (eval v) p = 0)
(hp : p ∈ restrictDegree σ K (Fintype.card K - 1))
: