Documentation

Mathlib.FieldTheory.Galois.Profinite

Galois Group as a profinite group #

In this file, we prove that given a field extension K/k, there is a continuous isomorphism between Gal(K/k) and the limit of Gal(L/k), where L is a finite Galois intermediate field ordered by inverse inclusion, thus making Gal(K/k) profinite as a limit of finite groups.

Main definitions and results #

In a field extension K/k

The (finite) Galois group Gal(L / k) associated to a L : FiniteGaloisIntermediateField k K L.

Equations
    Instances For
      noncomputable def finGaloisGroupMap {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] {L₁ L₂ : (FiniteGaloisIntermediateField k K)ᵒᵖ} (le : L₁ L₂) :

      For FiniteGaloisIntermediateField s L₁ and L₂ with L₂ ≤ L₁ the restriction homomorphism from Gal(L₁/k) to Gal(L₂/k)

      Equations
        Instances For

          The functor from FiniteGaloisIntermediateField (ordered by reverse inclusion) to FiniteGrp, mapping each FiniteGaloisIntermediateField L to Gal (L/k)

          Equations
            Instances For
              @[reducible, inline]

              The composition of finGaloisGroupFunctor with the forgetful functor from FiniteGrp to ProfiniteGrp.

              Equations
                Instances For

                  The homomorphism from Gal(K/k) to lim Gal(L/k) where L is a FiniteGaloisIntermediateField k K ordered by inverse inclusion. It is induced by the canonical projections from Gal(K/k) to Gal(L/k).

                  Equations
                    Instances For

                      The projection map from lim Gal(L/k) to a specific Gal(L/k).

                      Equations
                        Instances For
                          theorem InfiniteGalois.proj_of_le {k : Type u_3} {K : Type u_4} [Field k] [Field K] [Algebra k K] (L : FiniteGaloisIntermediateField k K) (g : (ProfiniteGrp.limit (asProfiniteGaloisGroupFunctor k K)).toProfinite.toTop) (x : L.toIntermediateField) (L' : FiniteGaloisIntermediateField k K) (h : L L') :
                          (((proj L) g) x) = (((proj L') g) x, )
                          noncomputable def InfiniteGalois.limitToAlgEquiv {k : Type u_3} {K : Type u_4} [Field k] [Field K] [Algebra k K] [IsGalois k K] (g : (ProfiniteGrp.limit (asProfiniteGaloisGroupFunctor k K)).toProfinite.toTop) :

                          toAlgEquivAux as an AlgEquiv. It is done by using above lifting lemmas on bigger FiniteGaloisIntermediateField.

                          Equations
                            Instances For

                              algEquivToLimit as a MulEquiv.

                              Equations
                                Instances For

                                  The ContinuousMulEquiv between K ≃ₐ[k] K and lim Gal(L/k) where L is a FiniteGaloisIntermediateField ordered by inverse inclusion, obtained from InfiniteGalois.mulEquivToLimit

                                  Equations
                                    Instances For
                                      noncomputable def InfiniteGalois.profiniteGalGrp (k : Type u_3) (K : Type u_4) [Field k] [Field K] [Algebra k K] [IsGalois k K] :

                                      Gal(K/k) as a profinite group as there is a ContinuousMulEquiv to a ProfiniteGrp given above

                                      Equations
                                        Instances For

                                          The categorical isomorphism between profiniteGalGrp and lim Gal(L/k) where L is a FiniteGaloisIntermediateField ordered by inverse inclusion

                                          Equations
                                            Instances For