Documentation

Mathlib.GroupTheory.GroupAction.SubMulAction.OfFixingSubgroup

SubMulActions on complements of invariant subsets #

def SubMulAction.ofFixingSubgroup (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] (s : Set α) :

The SubMulAction of fixingSubgroup M s on the complement of s.

Equations
    Instances For
      def SubAddAction.ofFixingAddSubgroup (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] (s : Set α) :

      The SubAddAction of fixingAddSubgroup M s on the complement of s.

      Equations
        Instances For
          @[simp]
          theorem SubMulAction.ofFixingSubgroup_carrier (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] (s : Set α) :
          @[simp]
          theorem SubAddAction.ofFixingAddSubgroup_carrier (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] (s : Set α) :
          theorem SubMulAction.mem_ofFixingSubgroup_iff (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] {s : Set α} {x : α} :
          x ofFixingSubgroup M s xs
          theorem SubAddAction.mem_ofFixingAddSubgroup_iff (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] {s : Set α} {x : α} :
          theorem SubMulAction.not_mem_of_mem_ofFixingSubgroup {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s : Set α} (x : (ofFixingSubgroup M s)) :
          xs
          theorem SubAddAction.not_mem_of_mem_ofFixingAddSubgroup {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s : Set α} (x : (ofFixingAddSubgroup M s)) :
          xs
          theorem SubMulAction.disjoint_val_image {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s : Set α} {t : Set (ofFixingSubgroup M s)} :
          theorem SubAddAction.disjoint_val_image {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s : Set α} {t : Set (ofFixingAddSubgroup M s)} :

          The identity map of the SubMulAction of the fixingSubgroup into the ambient set, as an equivariant map.

          Equations
            Instances For

              The identity map of the SubAddAction of the fixingAddSubgroup into the ambient set, as an equivariant map.

              Equations
                Instances For
                  theorem SubMulAction.mem_fixingSubgroup_insert_iff {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {a : α} {s : Set α} {m : M} :
                  theorem SubAddAction.mem_fixingAddSubgroup_insert_iff {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {a : α} {s : Set α} {m : M} :
                  theorem SubMulAction.fixingSubgroup_of_insert {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] (a : α) (s : Set (ofStabilizer M a)) :
                  theorem SubAddAction.fixingAddSubgroup_of_insert {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] (a : α) (s : Set (ofStabilizer M a)) :
                  theorem SubMulAction.mem_ofFixingSubgroup_insert_iff {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {a : α} {s : Set (ofStabilizer M a)} {x : α} :
                  x ofFixingSubgroup M (insert a ((fun (x : (ofStabilizer M a)) => x) '' s)) ∃ (hx : x ofStabilizer M a), x, hx ofFixingSubgroup (↥(MulAction.stabilizer M a)) s
                  theorem SubAddAction.mem_ofFixingAddSubgroup_insert_iff {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {a : α} {s : Set (ofStabilizer M a)} {x : α} :
                  x ofFixingAddSubgroup M (insert a ((fun (x : (ofStabilizer M a)) => x) '' s)) ∃ (hx : x ofStabilizer M a), x, hx ofFixingAddSubgroup (↥(AddAction.stabilizer M a)) s
                  def SubMulAction.fixingSubgroupInsertEquiv {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] (a : α) (s : Set (ofStabilizer M a)) :

                  The natural group isomorphism between fixing subgroups.

                  Equations
                    Instances For
                      def SubAddAction.fixingAddSubgroupInsertEquiv {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] (a : α) (s : Set (ofStabilizer M a)) :

                      The natural additive group isomorphism between fixing additive subgroups.

                      Equations
                        Instances For

                          The identity map of fixing subgroup of stabilizer into the fixing subgroup of the extended set, as an equivariant map.

                          Equations
                            Instances For

                              The identity map of fixing additive subgroup of stabilizer into the fixing additive subgroup of the extended set, as an equivariant map.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem SubMulAction.ofFixingSubgroup_insert_map_apply {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {a : α} {s : Set (ofStabilizer M a)} {x : α} (hx : x ofFixingSubgroup M (insert a (Subtype.val '' s))) :
                                  ((ofFixingSubgroup_insert_map a s) x, hx) = x
                                  @[simp]
                                  theorem SubAddAction.ofFixingAddSubgroup_insert_map_apply {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {a : α} {s : Set (ofStabilizer M a)} {x : α} (hx : x ofFixingAddSubgroup M (insert a (Subtype.val '' s))) :
                                  theorem Set.conj_mem_fixingSubgroup {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} {g : M} (hg : g t = s) {k : M} (hk : k fixingSubgroup M t) :
                                  theorem Set.conj_mem_fixingAddSubgroup {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s t : Set α} {g : M} (hg : g +ᵥ t = s) {k : M} (hk : k fixingAddSubgroup M t) :
                                  theorem SubMulAction.fixingSubgroup_map_conj_eq {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} {g : M} (hg : g t = s) :

                                  The fixingSubgroup of g • s is the conjugate of the fixingSubgroup of s by g.

                                  def SubMulAction.fixingSubgroupEquivFixingSubgroup {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} {g : M} (hg : g t = s) :

                                  The equivalence of fixingSubgroup M t with fixingSubgroup M s when s is a translate of t.

                                  Equations
                                    Instances For
                                      def SubAddAction.fixingAddSubgroupEquivFixingAddSubgroup {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s t : Set α} {g : M} (hg : g +ᵥ t = s) :

                                      The equivalence of fixingSubgroup M t with fixingSubgroup M s when s is a translate of t.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem SubMulAction.fixingSubgroupEquivFixingSubgroup_coe_apply {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} {g : M} (hg : g t = s) (x : (fixingSubgroup M t)) :
                                          @[simp]
                                          theorem SubAddAction.fixingAddSubgroupEquivFixingAddSubgroup_coe_apply {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s t : Set α} {g : M} (hg : g +ᵥ t = s) (x : (fixingAddSubgroup M t)) :
                                          def SubMulAction.conjMap_ofFixingSubgroup {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} {g : M} (hg : g t = s) :

                                          Conjugation induces an equivariant map between the SubMulAction of the fixing subgroup of a subset and that of a translate.

                                          Equations
                                            Instances For

                                              Conjugation induces an equivariant map between the SubAddAction of the fixing subgroup of a subset and that of a translate.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem SubMulAction.conjMap_ofFixingSubgroup_coe_apply {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} {g : M} {hg : g t = s} (x : (ofFixingSubgroup M t)) :
                                                  ((conjMap_ofFixingSubgroup hg) x) = g x
                                                  @[simp]
                                                  theorem SubAddAction.conjMap_ofFixingAddSubgroup_coe_apply {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s t : Set α} {g : M} {hg : g +ᵥ t = s} (x : (ofFixingAddSubgroup M t)) :
                                                  theorem SubMulAction.conjMap_ofFixingSubgroup_bijective {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} {g : M} {hst : g s = t} :
                                                  theorem SubAddAction.conjMap_ofFixingAddSubgroup_bijective {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s t : Set α} {g : M} {hst : g +ᵥ s = t} :
                                                  theorem SubMulAction.mem_fixingSubgroup_union_iff {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} {g : M} :

                                                  The group morphism from fixingSubgroup of a union to the iterated fixingSubgroup.

                                                  Equations
                                                    Instances For

                                                      The additive group morphism from fixingAddSubgroup of a union to the iterated fixingAddSubgroup.

                                                      Equations
                                                        Instances For
                                                          def SubMulAction.map_ofFixingSubgroupUnion (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] (s t : Set α) :
                                                          have ψ := fun (m : (fixingSubgroup M (s t))) => m, , ; (ofFixingSubgroup M (s t)) →ₑ[ψ] (ofFixingSubgroup (↥(fixingSubgroup M s)) (Subtype.val ⁻¹' t))

                                                          The identity between the iterated SubMulAction of the fixingSubgroup and the SubMulAction of the fixingSubgroup of the union, as an equivariant map.

                                                          Equations
                                                            Instances For
                                                              def SubAddAction.map_ofFixingAddSubgroupUnion (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] (s t : Set α) :
                                                              have ψ := fun (m : (fixingAddSubgroup M (s t))) => m, , ; (ofFixingAddSubgroup M (s t)) →ₑ[ψ] (ofFixingAddSubgroup (↥(fixingAddSubgroup M s)) (Subtype.val ⁻¹' t))

                                                              The identity between the iterated SubAddAction of the fixingAddSubgroup and the SubAddAction of the fixingAddSubgroup of the union, as an equivariant map.

                                                              Equations
                                                                Instances For
                                                                  theorem SubMulAction.map_ofFixingSubgroupUnion_def {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} (x : (ofFixingSubgroup M (s t))) :
                                                                  ((map_ofFixingSubgroupUnion M s t) x) = x
                                                                  theorem SubAddAction.map_ofFixingAddSubgroupUnion_def {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s t : Set α} (x : (ofFixingAddSubgroup M (s t))) :
                                                                  ((map_ofFixingAddSubgroupUnion M s t) x) = x
                                                                  def SubMulAction.ofFixingSubgroup_of_inclusion (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} (hst : t s) :

                                                                  The equivariant map on SubMulAction.ofFixingSubgroup given a set inclusion.

                                                                  Equations
                                                                    Instances For
                                                                      def SubAddAction.ofFixingAddSubgroup_of_inclusion (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] {s t : Set α} (hst : t s) :

                                                                      The equivariant map on SubAddAction.ofFixingAddSubgroup given a set inclusion.

                                                                      Equations
                                                                        Instances For
                                                                          def SubMulAction.ofFixingSubgroup_of_singleton (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] (a : α) :
                                                                          have φ := fun (x : (fixingSubgroup M {a})) => match x with | m, hm => m, ; (ofFixingSubgroup M {a}) →ₑ[φ] (ofStabilizer M a)

                                                                          The equivariant map between SubMulAction.ofStabilizer M a and ofFixingSubgroup M {a}.

                                                                          Equations
                                                                            Instances For
                                                                              def SubAddAction.ofFixingAddSubgroup_of_singleton (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] (a : α) :
                                                                              have φ := fun (x : (fixingAddSubgroup M {a})) => match x with | m, hm => m, ; (ofFixingAddSubgroup M {a}) →ₑ[φ] (ofStabilizer M a)

                                                                              The equivariant map between SubAddAction.ofStabilizer M a and ofFixingAddSubgroup M {a}.

                                                                              Equations
                                                                                Instances For
                                                                                  def SubMulAction.ofFixingSubgroup_of_eq (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} (hst : s = t) :
                                                                                  have φ := MulEquiv.subgroupCongr ; (ofFixingSubgroup M s) →ₑ[φ] (ofFixingSubgroup M t)

                                                                                  The identity between the SubMulActions of fixingSubgroups of equal sets, as an equivariant map.

                                                                                  Equations
                                                                                    Instances For
                                                                                      def SubAddAction.ofFixingAddSubgroup_of_eq (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] {s t : Set α} (hst : s = t) :

                                                                                      The identity between the SubAddActions of fixingAddSubgroups of equal sets, as an equivariant map.

                                                                                      Equations
                                                                                        Instances For
                                                                                          @[simp]
                                                                                          theorem SubMulAction.ofFixingSubgroup_of_eq_apply {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} {hst : s = t} (x : (ofFixingSubgroup M s)) :
                                                                                          ((ofFixingSubgroup_of_eq M hst) x) = x
                                                                                          @[simp]
                                                                                          theorem SubAddAction.ofFixingAddSubgroup_of_eq_apply {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s t : Set α} {hst : s = t} (x : (ofFixingAddSubgroup M s)) :
                                                                                          ((ofFixingAddSubgroup_of_eq M hst) x) = x
                                                                                          theorem SubMulAction.ofFixingSubgroup_of_eq_bijective {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s t : Set α} {hst : s = t} :
                                                                                          noncomputable def SubMulAction.ofFixingSubgroup.append {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s : Set α} {n : } [Finite s] (x : Fin n (ofFixingSubgroup M s)) :
                                                                                          Fin (s.ncard + n) α

                                                                                          Append Fin m ↪ ofFixingSubgroup M s at the end of an enumeration of s.

                                                                                          Equations
                                                                                            Instances For
                                                                                              noncomputable def SubAddAction.ofFixingAddSubgroup.append {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s : Set α} {n : } [Finite s] (x : Fin n (ofFixingAddSubgroup M s)) :
                                                                                              Fin (s.ncard + n) α

                                                                                              Append Fin m ↪ ofFixingSubgroup M s at the end of an enumeration of s.

                                                                                              Equations
                                                                                                Instances For
                                                                                                  theorem SubMulAction.ofFixingSubgroup.append_left {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s : Set α} {n : } [Finite s] (x : Fin n (ofFixingSubgroup M s)) (i : Fin s.ncard) :
                                                                                                  have Hs := ; (append x) (Fin.castAdd n i) = ((Classical.choice Hs) i)
                                                                                                  theorem SubAddAction.ofFixingAddSubgroup.append_left {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s : Set α} {n : } [Finite s] (x : Fin n (ofFixingAddSubgroup M s)) (i : Fin s.ncard) :
                                                                                                  have Hs := ; (append x) (Fin.castAdd n i) = ((Classical.choice Hs) i)
                                                                                                  theorem SubMulAction.ofFixingSubgroup.append_right {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s : Set α} {n : } [Finite s] (x : Fin n (ofFixingSubgroup M s)) (i : Fin n) :
                                                                                                  (append x) (Fin.natAdd s.ncard i) = (x i)
                                                                                                  theorem SubAddAction.ofFixingAddSubgroup.append_right {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s : Set α} {n : } [Finite s] (x : Fin n (ofFixingAddSubgroup M s)) (i : Fin n) :
                                                                                                  (append x) (Fin.natAdd s.ncard i) = (x i)