Ordered structures on localizations of commutative monoids #
instance
Localization.le
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
:
LE (Localization s)
Equations
instance
AddLocalization.le
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
:
LE (AddLocalization s)
Equations
instance
Localization.lt
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
:
LT (Localization s)
Equations
instance
AddLocalization.lt
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
:
LT (AddLocalization s)
Equations
theorem
Localization.mk_le_mk
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
{a₁ b₁ : α}
{a₂ b₂ : ↥s}
:
theorem
AddLocalization.mk_le_mk
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
{a₁ b₁ : α}
{a₂ b₂ : ↥s}
:
theorem
Localization.mk_lt_mk
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
{a₁ b₁ : α}
{a₂ b₂ : ↥s}
:
theorem
AddLocalization.mk_lt_mk
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
{a₁ b₁ : α}
{a₂ b₂ : ↥s}
:
instance
Localization.partialOrder
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
:
Equations
instance
AddLocalization.partialOrder
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
:
Equations
instance
Localization.isOrderedCancelMonoid
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
:
instance
AddLocalization.isOrderedAddCancelMonoid
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
:
instance
Localization.decidableLE
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
[DecidableLE α]
:
Equations
instance
AddLocalization.decidableLE
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
[DecidableLE α]
:
Equations
instance
Localization.decidableLT
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
[DecidableLT α]
:
Equations
instance
AddLocalization.decidableLT
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
[DecidableLT α]
:
Equations
def
Localization.mkOrderEmbedding
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
(b : ↥s)
:
An ordered cancellative monoid injects into its localization by sending a
to a / b
.
Equations
Instances For
def
AddLocalization.mkOrderEmbedding
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
(b : ↥s)
:
An ordered cancellative monoid injects into its localization by
sending a
to a - b
.
Equations
Instances For
@[simp]
theorem
AddLocalization.mkOrderEmbedding_apply
{α : Type u_1}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
(b : ↥s)
(a : α)
:
@[simp]
theorem
Localization.mkOrderEmbedding_apply
{α : Type u_1}
[CommMonoid α]
[PartialOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
(b : ↥s)
(a : α)
:
instance
Localization.instLinearOrderOfIsOrderedCancelMonoid
{α : Type u_1}
[CommMonoid α]
[LinearOrder α]
[IsOrderedCancelMonoid α]
{s : Submonoid α}
:
Equations
instance
AddLocalization.instLinearAddOrderOfIsOrderedAddCancelMonoid
{α : Type u_1}
[AddCommMonoid α]
[LinearOrder α]
[IsOrderedCancelAddMonoid α]
{s : AddSubmonoid α}
: