Documentation

Mathlib.GroupTheory.MonoidLocalization.Order

Ordered structures on localizations of commutative monoids #

Equations
    Equations
      theorem Localization.mk_le_mk {α : Type u_1} [CommMonoid α] [PartialOrder α] [IsOrderedCancelMonoid α] {s : Submonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
      mk a₁ a₂ mk b₁ b₂ b₂ * a₁ a₂ * b₁
      theorem AddLocalization.mk_le_mk {α : Type u_1} [AddCommMonoid α] [PartialOrder α] [IsOrderedCancelAddMonoid α] {s : AddSubmonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
      mk a₁ a₂ mk b₁ b₂ b₂ + a₁ a₂ + b₁
      theorem Localization.mk_lt_mk {α : Type u_1} [CommMonoid α] [PartialOrder α] [IsOrderedCancelMonoid α] {s : Submonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
      mk a₁ a₂ < mk b₁ b₂ b₂ * a₁ < a₂ * b₁
      theorem AddLocalization.mk_lt_mk {α : Type u_1} [AddCommMonoid α] [PartialOrder α] [IsOrderedCancelAddMonoid α] {s : AddSubmonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
      mk a₁ a₂ < mk b₁ b₂ b₂ + a₁ < a₂ + b₁

      An ordered cancellative monoid injects into its localization by sending a to a / b.

      Equations
        Instances For

          An ordered cancellative monoid injects into its localization by sending a to a - b.

          Equations
            Instances For
              @[simp]
              theorem AddLocalization.mkOrderEmbedding_apply {α : Type u_1} [AddCommMonoid α] [PartialOrder α] [IsOrderedCancelAddMonoid α] {s : AddSubmonoid α} (b : s) (a : α) :
              @[simp]
              theorem Localization.mkOrderEmbedding_apply {α : Type u_1} [CommMonoid α] [PartialOrder α] [IsOrderedCancelMonoid α] {s : Submonoid α} (b : s) (a : α) :