Documentation

Mathlib.GroupTheory.PresentedGroup

Defining a group given by generators and relations #

Given a subset rels of relations of the free group on a type α, this file constructs the group given by generators x : α and relations r ∈ rels.

Main definitions #

Tags #

generators, relations, group presentations

def PresentedGroup {α : Type u_1} (rels : Set (FreeGroup α)) :
Type u_1

Given a set of relations, rels, over a type α, PresentedGroup constructs the group with generators x : α and relations rels as a quotient of FreeGroup α.

Equations
    Instances For
      instance PresentedGroup.instGroup {α : Type u_1} (rels : Set (FreeGroup α)) :
      Equations
        def PresentedGroup.mk {α : Type u_1} (rels : Set (FreeGroup α)) :

        The canonical map from the free group on α to a presented group with generators x : α, where x is mapped to its equivalence class under the given set of relations rels

        Equations
          Instances For
            theorem PresentedGroup.mk_surjective {α : Type u_1} (rels : Set (FreeGroup α)) :
            def PresentedGroup.of {α : Type u_1} {rels : Set (FreeGroup α)} (x : α) :

            of is the canonical map from α to a presented group with generators x : α. The term x is mapped to the equivalence class of the image of x in FreeGroup α.

            Equations
              Instances For
                theorem PresentedGroup.mk_eq_one_iff {α : Type u_1} {rels : Set (FreeGroup α)} {x : FreeGroup α} :
                (mk rels) x = 1 x Subgroup.normalClosure rels
                theorem PresentedGroup.one_of_mem {α : Type u_1} {rels : Set (FreeGroup α)} {x : FreeGroup α} (hx : x rels) :
                (mk rels) x = 1
                theorem PresentedGroup.mk_eq_mk_of_mul_inv_mem {α : Type u_1} {rels : Set (FreeGroup α)} {x y : FreeGroup α} (hx : x * y⁻¹ rels) :
                (mk rels) x = (mk rels) y
                theorem PresentedGroup.mk_eq_mk_of_inv_mul_mem {α : Type u_1} {rels : Set (FreeGroup α)} {x y : FreeGroup α} (hx : x⁻¹ * y rels) :
                (mk rels) x = (mk rels) y
                @[simp]

                The generators of a presented group generate the presented group. That is, the subgroup closure of the set of generators equals .

                theorem PresentedGroup.induction_on {α : Type u_1} {rels : Set (FreeGroup α)} {C : PresentedGroup relsProp} (x : PresentedGroup rels) (H : ∀ (z : FreeGroup α), C ((mk rels) z)) :
                C x
                theorem PresentedGroup.generated_by {α : Type u_1} (rels : Set (FreeGroup α)) (H : Subgroup (PresentedGroup rels)) (h : ∀ (j : α), of j H) (x : PresentedGroup rels) :
                x H
                theorem PresentedGroup.closure_rels_subset_ker {α : Type u_1} {G : Type u_2} [Group G] {f : αG} {rels : Set (FreeGroup α)} (h : rrels, (FreeGroup.lift f) r = 1) :
                theorem PresentedGroup.to_group_eq_one_of_mem_closure {α : Type u_1} {G : Type u_2} [Group G] {f : αG} {rels : Set (FreeGroup α)} (h : rrels, (FreeGroup.lift f) r = 1) (x : FreeGroup α) :
                def PresentedGroup.toGroup {α : Type u_1} {G : Type u_2} [Group G] {f : αG} {rels : Set (FreeGroup α)} (h : rrels, (FreeGroup.lift f) r = 1) :

                The extension of a map f : α → G that satisfies the given relations to a group homomorphism from PresentedGroup rels → G.

                Equations
                  Instances For
                    @[simp]
                    theorem PresentedGroup.toGroup.of {α : Type u_1} {G : Type u_2} [Group G] {f : αG} {rels : Set (FreeGroup α)} (h : rrels, (FreeGroup.lift f) r = 1) {x : α} :
                    theorem PresentedGroup.toGroup.unique {α : Type u_1} {G : Type u_2} [Group G] {f : αG} {rels : Set (FreeGroup α)} (h : rrels, (FreeGroup.lift f) r = 1) (g : PresentedGroup rels →* G) (hg : ∀ (x : α), g (PresentedGroup.of x) = f x) {x : PresentedGroup rels} :
                    g x = (toGroup h) x
                    theorem PresentedGroup.ext {α : Type u_1} {G : Type u_2} [Group G] {rels : Set (FreeGroup α)} {φ ψ : PresentedGroup rels →* G} (hx : ∀ (x : α), φ (of x) = ψ (of x)) :
                    φ = ψ
                    theorem PresentedGroup.ext_iff {α : Type u_1} {G : Type u_2} [Group G] {rels : Set (FreeGroup α)} {φ ψ : PresentedGroup rels →* G} :
                    φ = ψ ∀ (x : α), φ (of x) = ψ (of x)
                    def PresentedGroup.equivPresentedGroup {α : Type u_1} {β : Type u_3} (rels : Set (FreeGroup α)) (e : α β) :

                    Presented groups of isomorphic types are isomorphic.

                    Equations
                      Instances For
                        theorem PresentedGroup.equivPresentedGroup_apply_of {α : Type u_1} {β : Type u_3} (x : α) (rels : Set (FreeGroup α)) (e : α β) :
                        (equivPresentedGroup rels e) (of x) = of (e x)
                        theorem PresentedGroup.equivPresentedGroup_symm_apply_of {α : Type u_1} {β : Type u_3} (x : β) (rels : Set (FreeGroup α)) (e : α β) :
                        (equivPresentedGroup rels e).symm (of x) = of (e.symm x)
                        instance PresentedGroup.instInhabited {α : Type u_1} (rels : Set (FreeGroup α)) :
                        Equations