Documentation

Mathlib.GroupTheory.Subgroup.Center

Centers of subgroups #

def Subgroup.center (G : Type u_1) [Group G] :

The center of a group G is the set of elements that commute with everything in G

Equations
    Instances For

      The center of an additive group G is the set of elements that commute with everything in G

      Equations
        Instances For
          theorem Subgroup.coe_center (G : Type u_1) [Group G] :
          @[deprecated Subgroup.center.isMulCommutative (since := "2025-04-09")]

          Alias of Subgroup.center.isMulCommutative.

          def Subgroup.centerCongr {G : Type u_1} [Group G] {H : Type u_2} [Group H] (e : G ≃* H) :
          (center G) ≃* (center H)

          The center of isomorphic groups are isomorphic.

          Equations
            Instances For
              def AddSubgroup.centerCongr {G : Type u_1} [AddGroup G] {H : Type u_2} [AddGroup H] (e : G ≃+ H) :
              (center G) ≃+ (center H)

              The center of isomorphic additive groups are isomorphic.

              Equations
                Instances For
                  @[simp]
                  theorem AddSubgroup.centerCongr_apply_coe {G : Type u_1} [AddGroup G] {H : Type u_2} [AddGroup H] (e : G ≃+ H) (r : (AddSubsemigroup.center G)) :
                  ((centerCongr e) r) = e r
                  @[simp]
                  theorem Subgroup.centerCongr_apply_coe {G : Type u_1} [Group G] {H : Type u_2} [Group H] (e : G ≃* H) (r : (Subsemigroup.center G)) :
                  ((centerCongr e) r) = e r
                  @[simp]
                  theorem AddSubgroup.centerCongr_symm_apply_coe {G : Type u_1} [AddGroup G] {H : Type u_2} [AddGroup H] (e : G ≃+ H) (s : (AddSubsemigroup.center H)) :
                  ((centerCongr e).symm s) = e.symm s
                  @[simp]
                  theorem Subgroup.centerCongr_symm_apply_coe {G : Type u_1} [Group G] {H : Type u_2} [Group H] (e : G ≃* H) (s : (Subsemigroup.center H)) :
                  ((centerCongr e).symm s) = e.symm s

                  The center of a group is isomorphic to the center of its opposite.

                  Equations
                    Instances For

                      The center of an additive group is isomorphic to the center of its opposite.

                      Equations
                        Instances For
                          theorem Subgroup.mem_center_iff {G : Type u_1} [Group G] {z : G} :
                          z center G ∀ (g : G), g * z = z * g
                          theorem AddSubgroup.mem_center_iff {G : Type u_1} [AddGroup G] {z : G} :
                          z center G ∀ (g : G), g + z = z + g
                          instance Subgroup.decidableMemCenter {G : Type u_1} [Group G] (z : G) [Decidable (∀ (g : G), g * z = z * g)] :
                          Equations

                            A group is commutative if the center is the whole group

                            Equations
                              Instances For
                                theorem IsConj.eq_of_left_mem_center {M : Type u_2} [Monoid M] {g h : M} (H : IsConj g h) (Hg : g Set.center M) :
                                g = h
                                theorem IsConj.eq_of_right_mem_center {M : Type u_2} [Monoid M] {g h : M} (H : IsConj g h) (Hh : h Set.center M) :
                                g = h