Documentation

Mathlib.LinearAlgebra.ExteriorAlgebra.Grading

Results about the grading structure of the exterior algebra #

Many of these results are copied with minimal modification from the tensor algebra.

The main result is ExteriorAlgebra.gradedAlgebra, which says that the exterior algebra is a ℕ-graded algebra.

def ExteriorAlgebra.GradedAlgebra.ι (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] :
M →ₗ[R] DirectSum fun (i : ) => (⋀[R]^i M)

A version of ExteriorAlgebra.ι that maps directly into the graded structure. This is primarily an auxiliary construction used to provide ExteriorAlgebra.gradedAlgebra.

Equations
    Instances For
      theorem ExteriorAlgebra.GradedAlgebra.ι_apply (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] (m : M) :
      (GradedAlgebra.ι R M) m = (DirectSum.of (fun (i : ) => (⋀[R]^i M)) 1) (ι R) m,
      theorem ExteriorAlgebra.GradedAlgebra.ι_sq_zero (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] (m : M) :
      def ExteriorAlgebra.GradedAlgebra.liftι (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] :
      ExteriorAlgebra R M →ₐ[R] DirectSum fun (i : ) => (⋀[R]^i M)

      ExteriorAlgebra.GradedAlgebra.ι lifted to exterior algebra. This is primarily an auxiliary construction used to provide ExteriorAlgebra.gradedAlgebra.

      Equations
        Instances For
          theorem ExteriorAlgebra.GradedAlgebra.liftι_eq (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] (i : ) (x : (⋀[R]^i M)) :
          (liftι R M) x = (DirectSum.of (fun (i : ) => (⋀[R]^i M)) i) x
          instance ExteriorAlgebra.gradedAlgebra (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] :
          GradedAlgebra fun (i : ) => ⋀[R]^i M

          The exterior algebra is graded by the powers of the submodule (ExteriorAlgebra.ι R).range.

          Equations
            theorem ExteriorAlgebra.ιMulti_span (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] :
            Submodule.span R (Set.range fun (x : (n : ) × (Fin nM)) => (ιMulti R x.fst) x.snd) =

            The union of the images of the maps ExteriorAlgebra.ιMulti R n for n running through all natural numbers spans the exterior algebra.