Documentation

Mathlib.LinearAlgebra.FreeModule.IdealQuotient

Ideals in free modules over PIDs #

Main results #

noncomputable def Ideal.quotientEquivPiSpan {ι : Type u_1} {R : Type u_2} {S : Type u_3} [CommRing R] [CommRing S] [Algebra R S] [IsDomain R] [IsPrincipalIdealRing R] [IsDomain S] [Finite ι] (I : Ideal S) (b : Module.Basis ι R S) (hI : I ) :
(S I) ≃ₗ[R] (i : ι) → R span {smithCoeffs b I hI i}

We can write the quotient of an ideal over a PID as a product of quotients by principal ideals.

Equations
    Instances For
      noncomputable def Ideal.quotientEquivPiZMod {ι : Type u_1} {S : Type u_3} [CommRing S] [IsDomain S] [Finite ι] (I : Ideal S) (b : Module.Basis ι S) (hI : I ) :
      S I ≃+ ((i : ι) → ZMod (smithCoeffs b I hI i).natAbs)

      Ideal quotients over a free finite extension of are isomorphic to a direct product of ZMod.

      Equations
        Instances For
          theorem Ideal.finiteQuotientOfFreeOfNeBot {S : Type u_3} [CommRing S] [IsDomain S] [Module.Free S] [Module.Finite S] (I : Ideal S) (hI : I ) :
          Finite (S I)

          A nonzero ideal over a free finite extension of has a finite quotient. It can't be an instance because of the side condition I ≠ ⊥.

          @[deprecated Ideal.finiteQuotientOfFreeOfNeBot (since := "2025-03-15")]
          theorem Ideal.fintypeQuotientOfFreeOfNeBot {S : Type u_3} [CommRing S] [IsDomain S] [Module.Free S] [Module.Finite S] (I : Ideal S) (hI : I ) :
          Finite (S I)

          Alias of Ideal.finiteQuotientOfFreeOfNeBot.


          A nonzero ideal over a free finite extension of has a finite quotient. It can't be an instance because of the side condition I ≠ ⊥.

          noncomputable def Ideal.quotientEquivDirectSum {ι : Type u_1} {R : Type u_2} {S : Type u_3} [CommRing R] [CommRing S] [Algebra R S] [IsDomain R] [IsPrincipalIdealRing R] [IsDomain S] [Finite ι] (F : Type u_4) [CommRing F] [Algebra F R] [Algebra F S] [IsScalarTower F R S] (b : Module.Basis ι R S) {I : Ideal S} (hI : I ) :
          (S I) ≃ₗ[F] DirectSum ι fun (i : ι) => R span {smithCoeffs b I hI i}

          Decompose S⧸I as a direct sum of cyclic R-modules (quotients by the ideals generated by Smith coefficients of I).

          Equations
            Instances For
              theorem Ideal.finrank_quotient_eq_sum {R : Type u_2} {S : Type u_3} [CommRing R] [CommRing S] [Algebra R S] [IsDomain R] [IsPrincipalIdealRing R] [IsDomain S] (F : Type u_4) [CommRing F] [Algebra F R] [Algebra F S] [IsScalarTower F R S] {I : Ideal S} (hI : I ) {ι : Type u_5} [Fintype ι] (b : Module.Basis ι R S) [Nontrivial F] [∀ (i : ι), Module.Free F (R span {smithCoeffs b I hI i})] [∀ (i : ι), Module.Finite F (R span {smithCoeffs b I hI i})] :
              Module.finrank F (S I) = i : ι, Module.finrank F (R span {smithCoeffs b I hI i})