Documentation

Mathlib.LinearAlgebra.SModEq

modular equivalence for submodule #

def SModEq {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] (U : Submodule R M) (x y : M) :

A predicate saying two elements of a module are equivalent modulo a submodule.

Equations
    Instances For

      A predicate saying two elements of a module are equivalent modulo a submodule.

      Equations
        Instances For
          theorem SModEq.def {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y : M} :
          theorem SModEq.sub_mem {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y : M} :
          x y [SMOD U] x - y U
          @[simp]
          theorem SModEq.top {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {x y : M} :
          @[simp]
          theorem SModEq.bot {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {x y : M} :
          x y [SMOD ] x = y
          theorem SModEq.mono {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U₁ U₂ : Submodule R M} {x y : M} (HU : U₁ U₂) (hxy : x y [SMOD U₁]) :
          x y [SMOD U₂]
          theorem SModEq.refl {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} (x : M) :
          x x [SMOD U]
          theorem SModEq.rfl {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x : M} :
          x x [SMOD U]
          instance SModEq.instIsRefl {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} :
          theorem SModEq.symm {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y : M} (hxy : x y [SMOD U]) :
          y x [SMOD U]
          theorem SModEq.comm {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y : M} :
          x y [SMOD U] y x [SMOD U]
          theorem SModEq.trans {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y z : M} (hxy : x y [SMOD U]) (hyz : y z [SMOD U]) :
          x z [SMOD U]
          instance SModEq.instTrans {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} :
          Equations
            theorem SModEq.add {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x₁ x₂ y₁ y₂ : M} (hxy₁ : x₁ y₁ [SMOD U]) (hxy₂ : x₂ y₂ [SMOD U]) :
            x₁ + x₂ y₁ + y₂ [SMOD U]
            theorem SModEq.sum {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {ι : Type u_5} {s : Finset ι} {x y : ιM} (hxy : is, x i y i [SMOD U]) :
            is, x i is, y i [SMOD U]
            theorem SModEq.smul {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y : M} (hxy : x y [SMOD U]) (c : R) :
            c x c y [SMOD U]
            theorem SModEq.nsmul {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y : M} (hxy : x y [SMOD U]) (n : ) :
            n x n y [SMOD U]
            theorem SModEq.zsmul {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y : M} (hxy : x y [SMOD U]) (n : ) :
            n x n y [SMOD U]
            theorem SModEq.mul {A : Type u_2} [CommRing A] {I : Ideal A} {x₁ x₂ y₁ y₂ : A} (hxy₁ : x₁ y₁ [SMOD I]) (hxy₂ : x₂ y₂ [SMOD I]) :
            x₁ * x₂ y₁ * y₂ [SMOD I]
            theorem SModEq.prod {A : Type u_2} [CommRing A] {I : Ideal A} {ι : Type u_5} {s : Finset ι} {x y : ιA} (hxy : is, x i y i [SMOD I]) :
            is, x i is, y i [SMOD I]
            theorem SModEq.pow {A : Type u_2} [CommRing A] {I : Ideal A} {x y : A} (n : ) (hxy : x y [SMOD I]) :
            x ^ n y ^ n [SMOD I]
            theorem SModEq.neg {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y : M} (hxy : x y [SMOD U]) :
            theorem SModEq.sub {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x₁ x₂ y₁ y₂ : M} (hxy₁ : x₁ y₁ [SMOD U]) (hxy₂ : x₂ y₂ [SMOD U]) :
            x₁ - x₂ y₁ - y₂ [SMOD U]
            theorem SModEq.zero {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x : M} :
            x 0 [SMOD U] x U
            theorem sub_smodEq_zero {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y : M} :
            x - y 0 [SMOD U] x y [SMOD U]
            theorem SModEq.map {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {U : Submodule R M} {x y : M} {N : Type u_4} [AddCommGroup N] [Module R N] (hxy : x y [SMOD U]) (f : M →ₗ[R] N) :
            theorem SModEq.comap {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {x y : M} {N : Type u_4} [AddCommGroup N] [Module R N] (V : Submodule R N) {f : M →ₗ[R] N} (hxy : f x f y [SMOD V]) :
            theorem SModEq.eval {R : Type u_5} [CommRing R] {I : Ideal R} {x y : R} (h : x y [SMOD I]) (f : Polynomial R) :