Documentation

Mathlib.LinearAlgebra.SymmetricAlgebra.Basis

A basis for SymmetricAlgebra R M #

Main definitions #

Main results #

Implementation notes #

This file closely mirrors the corresponding file for TensorAlgebra.

noncomputable def SymmetricAlgebra.equivMvPolynomial {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis κ R M) :

SymmetricAlgebra.equivMvPolynomial gives an algebra isomorphism between the symmetric algebra over a free module and multivariate polynomials over a basis. This is analogous to TensorAlgebra.equivFreeAlgebra.

Equations
    Instances For
      @[simp]
      theorem SymmetricAlgebra.equivMvPolynomial_ι_apply {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis κ R M) (i : κ) :
      (equivMvPolynomial b) ((ι R M) (b i)) = MvPolynomial.X i
      @[simp]
      theorem SymmetricAlgebra.equivMvPolynomial_symm_X {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis κ R M) (i : κ) :
      noncomputable def Module.Basis.symmetricAlgebra {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) :

      A basis on M can be lifted to a basis on SymmetricAlgebra R M.

      Equations
        Instances For

          SymmetricAlgebra R M is free when M is.

          The SymmetricAlgebra of a free module over a commutative semiring with no zero-divisors has no zero-divisors.

          The TensorAlgebra of a free module over an integral domain is a domain.