Documentation

Mathlib.LinearAlgebra.TensorAlgebra.Basic

Tensor Algebras #

Given a commutative semiring R, and an R-module M, we construct the tensor algebra of M. This is the free R-algebra generated (R-linearly) by the module M.

Notation #

  1. TensorAlgebra R M is the tensor algebra itself. It is endowed with an R-algebra structure.
  2. TensorAlgebra.ι R is the canonical R-linear map M → TensorAlgebra R M.
  3. Given a linear map f : M → A to an R-algebra A, lift R f is the lift of f to an R-algebra morphism TensorAlgebra R M → A.

Theorems #

  1. ι_comp_lift states that the composition (lift R f) ∘ (ι R) is identical to f.
  2. lift_unique states that whenever an R-algebra morphism g : TensorAlgebra R M → A is given whose composition with ι R is f, then one has g = lift R f.
  3. hom_ext is a variant of lift_unique in the form of an extensionality theorem.
  4. lift_comp_ι is a combination of ι_comp_lift and lift_unique. It states that the lift of the composition of an algebra morphism with ι is the algebra morphism itself.

Implementation details #

As noted above, the tensor algebra of M is constructed as the free R-algebra generated by M, modulo the additional relations making the inclusion of M into an R-linear map.

inductive TensorAlgebra.Rel (R : Type u_1) [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] :
FreeAlgebra R MFreeAlgebra R MProp

An inductively defined relation on Pre R M used to force the initial algebra structure on the associated quotient.

Instances For
    def TensorAlgebra (R : Type u_1) [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] :
    Type (max u_1 u_2)

    The tensor algebra of the module M over the commutative semiring R.

    Equations
      Instances For
        Equations
          instance instSemiringTensorAlgebra (R : Type u_1) [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] :
          Equations
            instance instAlgebra {R : Type u_3} {A : Type u_4} {M : Type u_5} [CommSemiring R] [AddCommMonoid M] [CommSemiring A] [Algebra R A] [Module R M] [Module A M] [IsScalarTower R A M] :
            Equations
              instance instSMulCommClassTensorAlgebra {R : Type u_3} {S : Type u_4} {A : Type u_5} {M : Type u_6} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [CommSemiring A] [Algebra R A] [Algebra S A] [Module R M] [Module S M] [Module A M] [IsScalarTower R A M] [IsScalarTower S A M] :
              instance instIsScalarTowerTensorAlgebra {R : Type u_3} {S : Type u_4} {A : Type u_5} {M : Type u_6} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [CommSemiring A] [SMul R S] [Algebra R A] [Algebra S A] [Module R M] [Module S M] [Module A M] [IsScalarTower R A M] [IsScalarTower S A M] [IsScalarTower R S A] :
              instance TensorAlgebra.instRing (M : Type u_2) [AddCommMonoid M] {S : Type u_3} [CommRing S] [Module S M] :
              Equations
                @[irreducible]
                def TensorAlgebra.ι (R : Type u_3) [CommSemiring R] {M : Type u_4} [AddCommMonoid M] [Module R M] :

                The canonical linear map M →ₗ[R] TensorAlgebra R M.

                Equations
                  Instances For
                    theorem TensorAlgebra.ι_def (R : Type u_3) [CommSemiring R] {M : Type u_4} [AddCommMonoid M] [Module R M] :
                    ι R = { toFun := fun (m : M) => (RingQuot.mkAlgHom R (Rel R M)) (FreeAlgebra.ι R m), map_add' := , map_smul' := }
                    def TensorAlgebra.lift (R : Type u_1) [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {A : Type u_3} [Semiring A] [Algebra R A] :

                    Given a linear map f : M → A where A is an R-algebra, lift R f is the unique lift of f to a morphism of R-algebras TensorAlgebra R M → A.

                    Equations
                      Instances For
                        @[simp]
                        theorem TensorAlgebra.lift_symm_apply (R : Type u_1) [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {A : Type u_3} [Semiring A] [Algebra R A] (F : TensorAlgebra R M →ₐ[R] A) :
                        @[simp]
                        theorem TensorAlgebra.ι_comp_lift {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {A : Type u_3} [Semiring A] [Algebra R A] (f : M →ₗ[R] A) :
                        ((lift R) f).toLinearMap ∘ₗ ι R = f
                        @[simp]
                        theorem TensorAlgebra.lift_ι_apply {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {A : Type u_3} [Semiring A] [Algebra R A] (f : M →ₗ[R] A) (x : M) :
                        ((lift R) f) ((ι R) x) = f x
                        @[simp]
                        theorem TensorAlgebra.lift_unique {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {A : Type u_3} [Semiring A] [Algebra R A] (f : M →ₗ[R] A) (g : TensorAlgebra R M →ₐ[R] A) :
                        g.toLinearMap ∘ₗ ι R = f g = (lift R) f
                        @[simp]
                        theorem TensorAlgebra.lift_comp_ι {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {A : Type u_3} [Semiring A] [Algebra R A] (g : TensorAlgebra R M →ₐ[R] A) :
                        (lift R) (g.toLinearMap ∘ₗ ι R) = g
                        theorem TensorAlgebra.hom_ext {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {A : Type u_3} [Semiring A] [Algebra R A] {f g : TensorAlgebra R M →ₐ[R] A} (w : f.toLinearMap ∘ₗ ι R = g.toLinearMap ∘ₗ ι R) :
                        f = g

                        See note [partially-applied ext lemmas].

                        theorem TensorAlgebra.hom_ext_iff {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {A : Type u_3} [Semiring A] [Algebra R A] {f g : TensorAlgebra R M →ₐ[R] A} :
                        theorem TensorAlgebra.induction {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {C : TensorAlgebra R MProp} (algebraMap : ∀ (r : R), C ((algebraMap R (TensorAlgebra R M)) r)) (ι : ∀ (x : M), C ((ι R) x)) (mul : ∀ (a b : TensorAlgebra R M), C aC bC (a * b)) (add : ∀ (a b : TensorAlgebra R M), C aC bC (a + b)) (a : TensorAlgebra R M) :
                        C a

                        If C holds for the algebraMap of r : R into TensorAlgebra R M, the ι of x : M, and is preserved under addition and multiplication, then it holds for all of TensorAlgebra R M.

                        @[simp]
                        @[simp]
                        theorem TensorAlgebra.range_lift {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] {A : Type u_3} [Semiring A] [Algebra R A] (f : M →ₗ[R] A) :

                        The left-inverse of algebraMap.

                        Equations
                          Instances For
                            @[simp]
                            theorem TensorAlgebra.algebraMap_inj {R : Type u_1} [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] (x y : R) :
                            (algebraMap R (TensorAlgebra R M)) x = (algebraMap R (TensorAlgebra R M)) y x = y
                            @[simp]
                            theorem TensorAlgebra.algebraMap_eq_zero_iff {R : Type u_1} [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] (x : R) :
                            (algebraMap R (TensorAlgebra R M)) x = 0 x = 0
                            @[simp]
                            theorem TensorAlgebra.algebraMap_eq_one_iff {R : Type u_1} [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] (x : R) :
                            (algebraMap R (TensorAlgebra R M)) x = 1 x = 1

                            A TensorAlgebra over a nontrivial semiring is nontrivial.

                            The canonical map from TensorAlgebra R M into TrivSqZeroExt R M that sends TensorAlgebra.ι to TrivSqZeroExt.inr.

                            Equations
                              Instances For
                                def TensorAlgebra.ιInv {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] :

                                The left-inverse of ι.

                                As an implementation detail, we implement this using TrivSqZeroExt which has a suitable algebra structure.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem TensorAlgebra.ι_inj (R : Type u_1) [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] (x y : M) :
                                    (ι R) x = (ι R) y x = y
                                    @[simp]
                                    theorem TensorAlgebra.ι_eq_zero_iff (R : Type u_1) [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] (x : M) :
                                    (ι R) x = 0 x = 0
                                    @[simp]
                                    theorem TensorAlgebra.ι_eq_algebraMap_iff {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] (x : M) (r : R) :
                                    (ι R) x = (algebraMap R (TensorAlgebra R M)) r x = 0 r = 0
                                    @[simp]
                                    theorem TensorAlgebra.ι_ne_one {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] [Nontrivial R] (x : M) :
                                    (ι R) x 1

                                    The generators of the tensor algebra are disjoint from its scalars.

                                    def TensorAlgebra.tprod (R : Type u_1) [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] (n : ) :
                                    MultilinearMap R (fun (x : Fin n) => M) (TensorAlgebra R M)

                                    Construct a product of n elements of the module within the tensor algebra.

                                    See also PiTensorProduct.tprod.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem TensorAlgebra.tprod_apply (R : Type u_1) [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] {n : } (x : Fin nM) :
                                        (tprod R M n) x = (List.ofFn fun (i : Fin n) => (ι R) (x i)).prod

                                        The canonical image of the FreeAlgebra in the TensorAlgebra, which maps FreeAlgebra.ι R x to TensorAlgebra.ι R x.

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem FreeAlgebra.toTensor_ι {R : Type u_1} [CommSemiring R] {M : Type u_2} [AddCommMonoid M] [Module R M] (m : M) :