Documentation

Mathlib.LinearAlgebra.TensorAlgebra.Basis

A basis for TensorAlgebra R M #

Main definitions #

Main results #

noncomputable def TensorAlgebra.equivFreeAlgebra {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis κ R M) :

A basis provides an algebra isomorphism with the free algebra, replacing each basis vector with its index.

Equations
    Instances For
      @[simp]
      theorem TensorAlgebra.equivFreeAlgebra_ι_apply {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis κ R M) (i : κ) :
      (equivFreeAlgebra b) ((ι R) (b i)) = FreeAlgebra.ι R i
      @[simp]
      theorem TensorAlgebra.equivFreeAlgebra_symm_ι {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis κ R M) (i : κ) :
      noncomputable def Module.Basis.tensorAlgebra {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) :

      A basis on M can be lifted to a basis on TensorAlgebra R M

      Equations
        Instances For
          @[simp]

          TensorAlgebra R M is free when M is.

          The TensorAlgebra of a free module over a commutative semiring with no zero-divisors has no zero-divisors.

          instance TensorAlgebra.instIsDomain {R : Type uR} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] [IsDomain R] [Module.Free R M] :

          The TensorAlgebra of a free module over an integral domain is a domain.