Documentation

Mathlib.LinearAlgebra.TensorAlgebra.ToTensorPower

Tensor algebras as direct sums of tensor powers #

In this file we show that TensorAlgebra R M is isomorphic to a direct sum of tensor powers, as TensorAlgebra.equivDirectSum.

The canonical embedding from a tensor power to the tensor algebra

Equations
    Instances For
      @[simp]
      theorem TensorPower.toTensorAlgebra_tprod {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n : } (x : Fin nM) :
      def TensorAlgebra.ofDirectSum {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] :

      The canonical map from a direct sum of tensor powers to the tensor algebra.

      Equations
        Instances For
          @[simp]
          theorem TensorAlgebra.ofDirectSum_of_tprod {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n : } (x : Fin nM) :
          ofDirectSum ((DirectSum.of (fun (n : ) => TensorPower R n M) n) ((PiTensorProduct.tprod R) x)) = (tprod R M n) x
          def TensorAlgebra.toDirectSum {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] :

          The canonical map from the tensor algebra to a direct sum of tensor powers.

          Equations
            Instances For
              @[simp]
              theorem TensorAlgebra.toDirectSum_ι {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (x : M) :
              toDirectSum ((ι R) x) = (DirectSum.of (fun (n : ) => TensorPower R n M) 1) ((PiTensorProduct.tprod R) fun (x_1 : Fin 1) => x)
              @[simp]
              theorem TensorAlgebra.mk_reindex_cast {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n m : } (h : n = m) (x : TensorPower R n M) :
              @[simp]
              theorem TensorAlgebra.mk_reindex_fin_cast {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n m : } (h : n = m) (x : TensorPower R n M) :
              theorem TensorPower.list_prod_gradedMonoid_mk_single {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (n : ) (x : Fin nM) :
              (List.map (fun (a : Fin n) => GradedMonoid.mk 1 ((PiTensorProduct.tprod R) fun (x_1 : Fin 1) => x a)) (List.finRange n)).prod = GradedMonoid.mk n ((PiTensorProduct.tprod R) x)

              The product of tensor products made of a single vector is the same as a single product of all the vectors.

              theorem TensorAlgebra.toDirectSum_tensorPower_tprod {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n : } (x : Fin nM) :
              toDirectSum ((tprod R M n) x) = (DirectSum.of (fun (i : ) => TensorPower R i M) n) ((PiTensorProduct.tprod R) x)
              @[simp]
              theorem TensorAlgebra.toDirectSum_ofDirectSum {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (x : DirectSum fun (n : ) => TensorPower R n M) :

              The tensor algebra is isomorphic to a direct sum of tensor powers.

              Equations
                Instances For