Documentation

Mathlib.LinearAlgebra.TensorProduct.Subalgebra

Some results on tensor product of subalgebras #

Linear maps induced by multiplication for subalgebras #

Let R be a commutative ring, S be a commutative R-algebra. Let A and B be R-subalgebras in S (Subalgebra R S). We define some linear maps induced by the multiplication in S, which are mainly used in the definition of linearly disjointness.

def Subalgebra.lTensorBot {R : Type u_1} {S : Type u_2} [CommSemiring R] [Semiring S] [Algebra R S] (A : Subalgebra R S) :
TensorProduct R A ≃ₐ[R] A

If A is a subalgebra of S/R, there is the natural R-algebra isomorphism between i(R) ⊗[R] A and A induced by multiplication in S, here i : R → S is the structure map. This generalizes Algebra.TensorProduct.lid as i(R) is not necessarily isomorphic to R.

This is the Subalgebra version of Submodule.lTensorOne

Equations
    Instances For
      @[simp]
      theorem Subalgebra.lTensorBot_tmul {R : Type u_1} {S : Type u_2} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (x : R) (a : A) :
      A.lTensorBot ((algebraMap R ) x ⊗ₜ[R] a) = x a
      @[simp]
      theorem Subalgebra.lTensorBot_one_tmul {R : Type u_1} {S : Type u_2} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (a : A) :
      A.lTensorBot (1 ⊗ₜ[R] a) = a
      @[simp]
      theorem Subalgebra.lTensorBot_symm_apply {R : Type u_1} {S : Type u_2} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (a : A) :
      def Subalgebra.rTensorBot {R : Type u_1} {S : Type u_2} [CommSemiring R] [Semiring S] [Algebra R S] (A : Subalgebra R S) :
      TensorProduct R A ≃ₐ[R] A

      If A is a subalgebra of S/R, there is the natural R-algebra isomorphism between A ⊗[R] i(R) and A induced by multiplication in S, here i : R → S is the structure map. This generalizes Algebra.TensorProduct.rid as i(R) is not necessarily isomorphic to R.

      This is the Subalgebra version of Submodule.rTensorOne

      Equations
        Instances For
          @[simp]
          theorem Subalgebra.rTensorBot_tmul {R : Type u_1} {S : Type u_2} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (x : R) (a : A) :
          A.rTensorBot (a ⊗ₜ[R] (algebraMap R ) x) = x a
          @[simp]
          theorem Subalgebra.rTensorBot_tmul_one {R : Type u_1} {S : Type u_2} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (a : A) :
          A.rTensorBot (a ⊗ₜ[R] 1) = a
          @[simp]
          theorem Subalgebra.rTensorBot_symm_apply {R : Type u_1} {S : Type u_2} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (a : A) :

          Given R-algebras S,T, there is a natural R-linear isomorphism from S ⊗[R] T to S' ⊗[R] T' where S',T' are the images of S,T in S ⊗[R] T respectively. This is promoted to an R-algebra isomorphism Algebra.TensorProduct.algEquivIncludeRange.

          Equations
            Instances For
              @[simp]
              theorem Algebra.TensorProduct.linearEquivIncludeRange_symm_tmul (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommSemiring R] [Semiring S] [Algebra R S] [Semiring T] [Algebra R T] (x : includeLeft.range) (y : includeRight.range) :
              (linearEquivIncludeRange R S T).symm (x ⊗ₜ[R] y) = x * y

              Given R-algebras S,T, there is a natural R-algebra isomorphism from S ⊗[R] T to S' ⊗[R] T' where S',T' are the images of S,T in S ⊗[R] T respectively.

              Equations
                Instances For
                  @[simp]
                  theorem Algebra.TensorProduct.algEquivIncludeRange_symm_tmul (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommSemiring R] [Semiring S] [Algebra R S] [Semiring T] [Algebra R T] (x : includeLeft.range) (y : includeRight.range) :
                  (algEquivIncludeRange R S T).symm (x ⊗ₜ[R] y) = x * y
                  def Subalgebra.mulMap {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] (A B : Subalgebra R S) :
                  TensorProduct R A B →ₐ[R] S

                  If A and B are subalgebras in a commutative algebra S over R, there is the natural R-algebra homomorphism A ⊗[R] B →ₐ[R] S induced by multiplication in S.

                  Equations
                    Instances For
                      @[simp]
                      theorem Subalgebra.mulMap_tmul {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] (A B : Subalgebra R S) (a : A) (b : B) :
                      (A.mulMap B) (a ⊗ₜ[R] b) = a * b
                      theorem Subalgebra.mulMap_map_comp_eq {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring T] [Algebra R T] (A B : Subalgebra R S) (f : S →ₐ[R] T) :
                      theorem Subalgebra.mulMap_comm {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] (A B : Subalgebra R S) :
                      B.mulMap A = (A.mulMap B).comp (Algebra.TensorProduct.comm R B A)
                      theorem Subalgebra.mulMap_range {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] (A B : Subalgebra R S) :
                      (A.mulMap B).range = AB
                      theorem Subalgebra.mulMap_bot_left_eq {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] (A : Subalgebra R S) :
                      def Subalgebra.mulMap' {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] (A B : Subalgebra R S) :
                      TensorProduct R A B →ₐ[R] (AB)

                      If A and B are subalgebras in a commutative algebra S over R, there is the natural R-algebra homomorphism A ⊗[R] B →ₐ[R] A ⊔ B induced by multiplication in S, which is surjective (Subalgebra.mulMap'_surjective).

                      Equations
                        Instances For
                          @[simp]
                          theorem Subalgebra.val_mulMap'_tmul {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] {A B : Subalgebra R S} (a : A) (b : B) :
                          ((A.mulMap' B) (a ⊗ₜ[R] b)) = a * b