Documentation

Mathlib.MeasureTheory.Constructions.BorelSpace.Real

Borel (measurable) spaces ℝ, ℝ≥0, ℝ≥0∞ #

Main statements #

theorem Real.borel_eq_generateFrom_Ioo_rat :
borel = MeasurableSpace.generateFrom (⋃ (a : ), ⋃ (b : ), ⋃ (_ : a < b), {Set.Ioo a b})
theorem Real.isPiSystem_Ioo_rat :
IsPiSystem (⋃ (a : ), ⋃ (b : ), ⋃ (_ : a < b), {Set.Ioo a b})

The intervals (-(n + 1), (n + 1)) form a finite spanning sets in the set of open intervals with rational endpoints for a locally finite measure μ on .

Equations
    Instances For
      theorem Real.measure_ext_Ioo_rat {μ ν : MeasureTheory.Measure } [MeasureTheory.IsLocallyFiniteMeasure μ] (h : ∀ (a b : ), μ (Set.Ioo a b) = ν (Set.Ioo a b)) :
      μ = ν
      theorem Measurable.real_toNNReal {α : Type u_1} { : MeasurableSpace α} {f : α} (hf : Measurable f) :
      Measurable fun (x : α) => (f x).toNNReal
      theorem AEMeasurable.real_toNNReal {α : Type u_1} { : MeasurableSpace α} {f : α} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
      AEMeasurable (fun (x : α) => (f x).toNNReal) μ
      theorem Measurable.coe_nnreal_real {α : Type u_1} { : MeasurableSpace α} {f : αNNReal} (hf : Measurable f) :
      Measurable fun (x : α) => (f x)
      theorem AEMeasurable.coe_nnreal_real {α : Type u_1} { : MeasurableSpace α} {f : αNNReal} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
      AEMeasurable (fun (x : α) => (f x)) μ
      theorem Measurable.coe_nnreal_ennreal {α : Type u_1} { : MeasurableSpace α} {f : αNNReal} (hf : Measurable f) :
      Measurable fun (x : α) => (f x)
      theorem AEMeasurable.coe_nnreal_ennreal {α : Type u_1} { : MeasurableSpace α} {f : αNNReal} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
      AEMeasurable (fun (x : α) => (f x)) μ
      theorem Measurable.ennreal_ofReal {α : Type u_1} { : MeasurableSpace α} {f : α} (hf : Measurable f) :
      Measurable fun (x : α) => ENNReal.ofReal (f x)
      theorem AEMeasurable.ennreal_ofReal {α : Type u_1} { : MeasurableSpace α} {f : α} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
      AEMeasurable (fun (x : α) => ENNReal.ofReal (f x)) μ
      @[simp]
      theorem measurable_coe_nnreal_real_iff {α : Type u_1} { : MeasurableSpace α} {f : αNNReal} :
      (Measurable fun (x : α) => (f x)) Measurable f
      @[simp]
      theorem aemeasurable_coe_nnreal_real_iff {α : Type u_1} { : MeasurableSpace α} {f : αNNReal} {μ : MeasureTheory.Measure α} :
      AEMeasurable (fun (x : α) => (f x)) μ AEMeasurable f μ

      The set of finite ℝ≥0∞ numbers is MeasurableEquiv to ℝ≥0.

      Equations
        Instances For
          theorem ENNReal.measurable_of_measurable_nnreal {α : Type u_1} { : MeasurableSpace α} {f : ENNRealα} (h : Measurable fun (p : NNReal) => f p) :

          ℝ≥0∞ is MeasurableEquiv to ℝ≥0 ⊕ Unit.

          Equations
            Instances For
              theorem ENNReal.measurable_of_measurable_nnreal_prod {β : Type u_2} {γ : Type u_3} {x✝ : MeasurableSpace β} {x✝¹ : MeasurableSpace γ} {f : ENNReal × βγ} (H₁ : Measurable fun (p : NNReal × β) => f (p.1, p.2)) (H₂ : Measurable fun (x : β) => f (, x)) :
              theorem ENNReal.measurable_of_measurable_nnreal_nnreal {β : Type u_2} {x✝ : MeasurableSpace β} {f : ENNReal × ENNRealβ} (h₁ : Measurable fun (p : NNReal × NNReal) => f (p.1, p.2)) (h₂ : Measurable fun (r : NNReal) => f (, r)) (h₃ : Measurable fun (r : NNReal) => f (r, )) :
              theorem ENNReal.measurable_of_tendsto' {α : Type u_1} { : MeasurableSpace α} {ι : Type u_5} {f : ιαENNReal} {g : αENNReal} (u : Filter ι) [u.NeBot] [u.IsCountablyGenerated] (hf : ∀ (i : ι), Measurable (f i)) (lim : Filter.Tendsto f u (nhds g)) :

              A limit (over a general filter) of measurable ℝ≥0∞ valued functions is measurable.

              theorem ENNReal.measurable_of_tendsto {α : Type u_1} { : MeasurableSpace α} {f : αENNReal} {g : αENNReal} (hf : ∀ (i : ), Measurable (f i)) (lim : Filter.Tendsto f Filter.atTop (nhds g)) :

              A sequential limit of measurable ℝ≥0∞ valued functions is measurable.

              theorem ENNReal.aemeasurable_of_tendsto' {α : Type u_1} { : MeasurableSpace α} {ι : Type u_5} {f : ιαENNReal} {g : αENNReal} {μ : MeasureTheory.Measure α} (u : Filter ι) [u.NeBot] [u.IsCountablyGenerated] (hf : ∀ (i : ι), AEMeasurable (f i) μ) (hlim : ∀ᵐ (a : α) μ, Filter.Tendsto (fun (i : ι) => f i a) u (nhds (g a))) :

              A limit (over a general filter) of a.e.-measurable ℝ≥0∞ valued functions is a.e.-measurable.

              theorem ENNReal.aemeasurable_of_tendsto {α : Type u_1} { : MeasurableSpace α} {f : αENNReal} {g : αENNReal} {μ : MeasureTheory.Measure α} (hf : ∀ (i : ), AEMeasurable (f i) μ) (hlim : ∀ᵐ (a : α) μ, Filter.Tendsto (fun (i : ) => f i a) Filter.atTop (nhds (g a))) :

              A limit of a.e.-measurable ℝ≥0∞ valued functions is a.e.-measurable.

              theorem Measurable.ennreal_toNNReal {α : Type u_1} { : MeasurableSpace α} {f : αENNReal} (hf : Measurable f) :
              Measurable fun (x : α) => (f x).toNNReal
              theorem AEMeasurable.ennreal_toNNReal {α : Type u_1} { : MeasurableSpace α} {f : αENNReal} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
              AEMeasurable (fun (x : α) => (f x).toNNReal) μ
              @[simp]
              theorem measurable_coe_nnreal_ennreal_iff {α : Type u_1} { : MeasurableSpace α} {f : αNNReal} :
              (Measurable fun (x : α) => (f x)) Measurable f
              @[simp]
              theorem aemeasurable_coe_nnreal_ennreal_iff {α : Type u_1} { : MeasurableSpace α} {f : αNNReal} {μ : MeasureTheory.Measure α} :
              AEMeasurable (fun (x : α) => (f x)) μ AEMeasurable f μ
              theorem Measurable.ennreal_toReal {α : Type u_1} { : MeasurableSpace α} {f : αENNReal} (hf : Measurable f) :
              Measurable fun (x : α) => (f x).toReal
              theorem AEMeasurable.ennreal_toReal {α : Type u_1} { : MeasurableSpace α} {f : αENNReal} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
              AEMeasurable (fun (x : α) => (f x).toReal) μ
              theorem Measurable.ennreal_tsum {α : Type u_1} { : MeasurableSpace α} {ι : Type u_5} [Countable ι] {f : ιαENNReal} (h : ∀ (i : ι), Measurable (f i)) :
              Measurable fun (x : α) => ∑' (i : ι), f i x

              note: ℝ≥0∞ can probably be generalized in a future version of this lemma.

              theorem Measurable.ennreal_tsum' {α : Type u_1} { : MeasurableSpace α} {ι : Type u_5} [Countable ι] {f : ιαENNReal} (h : ∀ (i : ι), Measurable (f i)) :
              Measurable (∑' (i : ι), f i)
              theorem Measurable.nnreal_tsum {α : Type u_1} { : MeasurableSpace α} {ι : Type u_5} [Countable ι] {f : ιαNNReal} (h : ∀ (i : ι), Measurable (f i)) :
              Measurable fun (x : α) => ∑' (i : ι), f i x
              theorem AEMeasurable.ennreal_tsum {α : Type u_1} { : MeasurableSpace α} {ι : Type u_5} [Countable ι] {f : ιαENNReal} {μ : MeasureTheory.Measure α} (h : ∀ (i : ι), AEMeasurable (f i) μ) :
              AEMeasurable (fun (x : α) => ∑' (i : ι), f i x) μ
              theorem AEMeasurable.nnreal_tsum {α : Type u_5} {x✝ : MeasurableSpace α} {ι : Type u_6} [Countable ι] {f : ιαNNReal} {μ : MeasureTheory.Measure α} (h : ∀ (i : ι), AEMeasurable (f i) μ) :
              AEMeasurable (fun (x : α) => ∑' (i : ι), f i x) μ
              theorem Measurable.coe_real_ereal {α : Type u_1} { : MeasurableSpace α} {f : α} (hf : Measurable f) :
              Measurable fun (x : α) => (f x)
              theorem AEMeasurable.coe_real_ereal {α : Type u_1} { : MeasurableSpace α} {f : α} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
              AEMeasurable (fun (x : α) => (f x)) μ

              The set of finite EReal numbers is MeasurableEquiv to .

              Equations
                Instances For
                  theorem EReal.measurable_of_measurable_real {α : Type u_1} { : MeasurableSpace α} {f : ERealα} (h : Measurable fun (p : ) => f p) :
                  theorem Measurable.ereal_toReal {α : Type u_1} { : MeasurableSpace α} {f : αEReal} (hf : Measurable f) :
                  Measurable fun (x : α) => (f x).toReal
                  theorem AEMeasurable.ereal_toReal {α : Type u_1} { : MeasurableSpace α} {f : αEReal} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
                  AEMeasurable (fun (x : α) => (f x).toReal) μ
                  theorem Measurable.coe_ereal_ennreal {α : Type u_1} { : MeasurableSpace α} {f : αENNReal} (hf : Measurable f) :
                  Measurable fun (x : α) => (f x)
                  theorem AEMeasurable.coe_ereal_ennreal {α : Type u_1} { : MeasurableSpace α} {f : αENNReal} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
                  AEMeasurable (fun (x : α) => (f x)) μ
                  theorem Measurable.ereal_toENNReal {α : Type u_1} { : MeasurableSpace α} {f : αEReal} (hf : Measurable f) :
                  Measurable fun (x : α) => (f x).toENNReal
                  theorem AEMeasurable.ereal_toENNReal {α : Type u_1} { : MeasurableSpace α} {f : αEReal} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
                  AEMeasurable (fun (x : α) => (f x).toENNReal) μ
                  theorem NNReal.measurable_of_tendsto' {α : Type u_1} { : MeasurableSpace α} {ι : Type u_5} {f : ιαNNReal} {g : αNNReal} (u : Filter ι) [u.NeBot] [u.IsCountablyGenerated] (hf : ∀ (i : ι), Measurable (f i)) (lim : Filter.Tendsto f u (nhds g)) :

                  A limit (over a general filter) of measurable ℝ≥0 valued functions is measurable.

                  theorem NNReal.measurable_of_tendsto {α : Type u_1} { : MeasurableSpace α} {f : αNNReal} {g : αNNReal} (hf : ∀ (i : ), Measurable (f i)) (lim : Filter.Tendsto f Filter.atTop (nhds g)) :

                  A sequential limit of measurable ℝ≥0 valued functions is measurable.

                  theorem EReal.measurable_of_real_prod {β : Type u_6} {γ : Type u_7} { : MeasurableSpace β} { : MeasurableSpace γ} {f : EReal × βγ} (h_real : Measurable fun (p : × β) => f (p.1, p.2)) (h_bot : Measurable fun (x : β) => f (, x)) (h_top : Measurable fun (x : β) => f (, x)) :
                  theorem EReal.measurable_of_real_real {β : Type u_6} { : MeasurableSpace β} {f : EReal × ERealβ} (h_real : Measurable fun (p : × ) => f (p.1, p.2)) (h_bot_left : Measurable fun (r : ) => f (, r)) (h_top_left : Measurable fun (r : ) => f (, r)) (h_bot_right : Measurable fun (r : ) => f (r, )) (h_top_right : Measurable fun (r : ) => f (r, )) :
                  theorem exists_spanning_measurableSet_le {α : Type u_1} { : MeasurableSpace α} {f : αNNReal} (hf : Measurable f) (μ : MeasureTheory.Measure α) [MeasureTheory.SigmaFinite μ] :
                  ∃ (s : Set α), (∀ (n : ), MeasurableSet (s n) μ (s n) < xs n, f x n) ⋃ (i : ), s i = Set.univ

                  If a function f : α → ℝ≥0 is measurable and the measure is σ-finite, then there exists spanning measurable sets with finite measure on which f is bounded. See also StronglyMeasurable.exists_spanning_measurableSet_norm_le for functions into normed groups.