Documentation

Mathlib.MeasureTheory.Constructions.Cylinders

π-systems of cylinders and square cylinders #

The instance MeasurableSpace.pi on ∀ i, α i, where each α i has a MeasurableSpace m i, is defined as ⨆ i, (m i).comap (fun a => a i). That is, a function g : β → ∀ i, α i is measurable iff for all i, the function b ↦ g b i is measurable.

We define two π-systems generating MeasurableSpace.pi, cylinders and square cylinders.

Main definitions #

Given a finite set s of indices, a cylinder is the product of a set of ∀ i : s, α i and of univ on the other indices. A square cylinder is a cylinder for which the set on ∀ i : s, α i is a product set.

Main statements #

def MeasureTheory.squareCylinders {ι : Type u_1} {α : ιType u_2} (C : (i : ι) → Set (Set (α i))) :
Set (Set ((i : ι) → α i))

Given a finite set s of indices, a square cylinder is the product of a set S of ∀ i : s, α i and of univ on the other indices. The set S is a product of sets t i such that for all i : s, t i ∈ C i. squareCylinders is the set of all such squareCylinders.

Equations
    Instances For
      theorem MeasureTheory.squareCylinders_eq_iUnion_image {ι : Type u_2} {α : ιType u_1} (C : (i : ι) → Set (Set (α i))) :
      squareCylinders C = ⋃ (s : Finset ι), (fun (t : (i : ι) → Set (α i)) => (↑s).pi t) '' Set.univ.pi C
      theorem MeasureTheory.isPiSystem_squareCylinders {ι : Type u_2} {α : ιType u_1} {C : (i : ι) → Set (Set (α i))} (hC : ∀ (i : ι), IsPiSystem (C i)) (hC_univ : ∀ (i : ι), Set.univ C i) :
      theorem MeasureTheory.comap_eval_le_generateFrom_squareCylinders_singleton {ι : Type u_2} (α : ιType u_1) [m : (i : ι) → MeasurableSpace (α i)] (i : ι) :
      MeasurableSpace.comap (Function.eval i) (m i) MeasurableSpace.generateFrom ((fun (t : (i : ι) → Set (α i)) => {i}.pi t) '' Set.univ.pi fun (i : ι) => {s : Set (α i) | MeasurableSet s})
      theorem MeasureTheory.generateFrom_squareCylinders {ι : Type u_2} {α : ιType u_1} [(i : ι) → MeasurableSpace (α i)] :

      The square cylinders formed from measurable sets generate the product σ-algebra.

      def MeasureTheory.cylinder {ι : Type u_1} {α : ιType u_2} (s : Finset ι) (S : Set ((i : { x : ι // x s }) → α i)) :
      Set ((i : ι) → α i)

      Given a finite set s of indices, a cylinder is the preimage of a set S of ∀ i : s, α i by the projection from ∀ i, α i to ∀ i : s, α i.

      Equations
        Instances For
          @[simp]
          theorem MeasureTheory.mem_cylinder {ι : Type u_1} {α : ιType u_2} (s : Finset ι) (S : Set ((i : { x : ι // x s }) → α i)) (f : (i : ι) → α i) :
          @[simp]
          theorem MeasureTheory.cylinder_empty {ι : Type u_1} {α : ιType u_2} (s : Finset ι) :
          @[simp]
          theorem MeasureTheory.cylinder_univ {ι : Type u_1} {α : ιType u_2} (s : Finset ι) :
          @[simp]
          theorem MeasureTheory.cylinder_eq_empty_iff {ι : Type u_1} {α : ιType u_2} [h_nonempty : Nonempty ((i : ι) → α i)] (s : Finset ι) (S : Set ((i : { x : ι // x s }) → α i)) :
          theorem MeasureTheory.inter_cylinder {ι : Type u_1} {α : ιType u_2} (s₁ s₂ : Finset ι) (S₁ : Set ((i : { x : ι // x s₁ }) → α i)) (S₂ : Set ((i : { x : ι // x s₂ }) → α i)) [DecidableEq ι] :
          cylinder s₁ S₁ cylinder s₂ S₂ = cylinder (s₁ s₂) (Finset.restrict₂ ⁻¹' S₁ Finset.restrict₂ ⁻¹' S₂)
          theorem MeasureTheory.inter_cylinder_same {ι : Type u_1} {α : ιType u_2} (s : Finset ι) (S₁ S₂ : Set ((i : { x : ι // x s }) → α i)) :
          cylinder s S₁ cylinder s S₂ = cylinder s (S₁ S₂)
          theorem MeasureTheory.union_cylinder {ι : Type u_1} {α : ιType u_2} (s₁ s₂ : Finset ι) (S₁ : Set ((i : { x : ι // x s₁ }) → α i)) (S₂ : Set ((i : { x : ι // x s₂ }) → α i)) [DecidableEq ι] :
          cylinder s₁ S₁ cylinder s₂ S₂ = cylinder (s₁ s₂) (Finset.restrict₂ ⁻¹' S₁ Finset.restrict₂ ⁻¹' S₂)
          theorem MeasureTheory.union_cylinder_same {ι : Type u_1} {α : ιType u_2} (s : Finset ι) (S₁ S₂ : Set ((i : { x : ι // x s }) → α i)) :
          cylinder s S₁ cylinder s S₂ = cylinder s (S₁ S₂)
          theorem MeasureTheory.compl_cylinder {ι : Type u_1} {α : ιType u_2} (s : Finset ι) (S : Set ((i : { x : ι // x s }) → α i)) :
          theorem MeasureTheory.diff_cylinder_same {ι : Type u_1} {α : ιType u_2} (s : Finset ι) (S T : Set ((i : { x : ι // x s }) → α i)) :
          cylinder s S \ cylinder s T = cylinder s (S \ T)
          theorem MeasureTheory.eq_of_cylinder_eq_of_subset {ι : Type u_1} {α : ιType u_2} [h_nonempty : Nonempty ((i : ι) → α i)] {I J : Finset ι} {S : Set ((i : { x : ι // x I }) → α i)} {T : Set ((i : { x : ι // x J }) → α i)} (h_eq : cylinder I S = cylinder J T) (hJI : J I) :
          theorem MeasureTheory.cylinder_eq_cylinder_union {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] (I : Finset ι) (S : Set ((i : { x : ι // x I }) → α i)) (J : Finset ι) :
          theorem MeasureTheory.disjoint_cylinder_iff {ι : Type u_1} {α : ιType u_2} [Nonempty ((i : ι) → α i)] {s t : Finset ι} {S : Set ((i : { x : ι // x s }) → α i)} {T : Set ((i : { x : ι // x t }) → α i)} [DecidableEq ι] :
          theorem MeasureTheory.IsClosed.cylinder {ι : Type u_2} {α : ιType u_1} [(i : ι) → TopologicalSpace (α i)] (s : Finset ι) {S : Set ((i : { x : ι // x s }) → α i)} (hs : IsClosed S) :
          theorem MeasurableSet.cylinder {ι : Type u_2} {α : ιType u_1} [(i : ι) → MeasurableSpace (α i)] (s : Finset ι) {S : Set ((i : { x : ι // x s }) → α i)} (hS : MeasurableSet S) :
          theorem MeasureTheory.dependsOn_cylinder_indicator_const {ι : Type u_2} {α : ιType u_3} {M : Type u_1} [Zero M] {I : Finset ι} (S : Set ((i : { x : ι // x I }) → α i)) (c : M) :
          DependsOn ((cylinder I S).indicator fun (x : (i : ι) → α i) => c) I

          The indicator of a cylinder only depends on the variables whose the cylinder depends on.

          def MeasureTheory.measurableCylinders {ι : Type u_2} (α : ιType u_1) [(i : ι) → MeasurableSpace (α i)] :
          Set (Set ((i : ι) → α i))

          Given a finite set s of indices, a cylinder is the preimage of a set S of ∀ i : s, α i by the projection from ∀ i, α i to ∀ i : s, α i. measurableCylinders is the set of all cylinders with measurable base S.

          Equations
            Instances For
              theorem MeasureTheory.empty_mem_measurableCylinders {ι : Type u_2} (α : ιType u_1) [(i : ι) → MeasurableSpace (α i)] :
              @[simp]
              theorem MeasureTheory.mem_measurableCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] (t : Set ((i : ι) → α i)) :
              t measurableCylinders α ∃ (s : Finset ι) (S : Set ((i : { x : ι // x s }) → α i)), MeasurableSet S t = cylinder s S
              theorem MeasurableSet.of_mem_measurableCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {s : Set ((i : ι) → α i)} (hs : s MeasureTheory.measurableCylinders α) :
              noncomputable def MeasureTheory.measurableCylinders.finset {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {t : Set ((i : ι) → α i)} (ht : t measurableCylinders α) :

              A finset s such that t = cylinder s S. S is given by measurableCylinders.set.

              Equations
                Instances For
                  def MeasureTheory.measurableCylinders.set {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {t : Set ((i : ι) → α i)} (ht : t measurableCylinders α) :
                  Set ((i : { x : ι // x finset ht }) → α i)

                  A set S such that t = cylinder s S. s is given by measurableCylinders.finset.

                  Equations
                    Instances For
                      theorem MeasureTheory.measurableCylinders.measurableSet {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {t : Set ((i : ι) → α i)} (ht : t measurableCylinders α) :
                      theorem MeasureTheory.measurableCylinders.eq_cylinder {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {t : Set ((i : ι) → α i)} (ht : t measurableCylinders α) :
                      t = cylinder (finset ht) (set ht)
                      theorem MeasureTheory.cylinder_mem_measurableCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] (s : Finset ι) (S : Set ((i : { x : ι // x s }) → α i)) (hS : MeasurableSet S) :
                      theorem MeasureTheory.inter_mem_measurableCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {s t : Set ((i : ι) → α i)} (hs : s measurableCylinders α) (ht : t measurableCylinders α) :
                      theorem MeasureTheory.isPiSystem_measurableCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] :
                      theorem MeasureTheory.compl_mem_measurableCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {s : Set ((i : ι) → α i)} (hs : s measurableCylinders α) :
                      theorem MeasureTheory.univ_mem_measurableCylinders {ι : Type u_2} (α : ιType u_1) [(i : ι) → MeasurableSpace (α i)] :
                      theorem MeasureTheory.union_mem_measurableCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {s t : Set ((i : ι) → α i)} (hs : s measurableCylinders α) (ht : t measurableCylinders α) :
                      theorem MeasureTheory.diff_mem_measurableCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {s t : Set ((i : ι) → α i)} (hs : s measurableCylinders α) (ht : t measurableCylinders α) :

                      The measurable cylinders generate the product σ-algebra.

                      theorem MeasureTheory.measurableCylinders_nat {X : Type u_1} [(n : ) → MeasurableSpace (X n)] :
                      measurableCylinders X = ⋃ (a : ), ⋃ (S : Set ((i : { x : // x Finset.Iic a }) → X i)), ⋃ (_ : MeasurableSet S), {cylinder (Finset.Iic a) S}

                      The cylinders of a product space indexed by can be seen as depending on the first coordinates.

                      Cylinder events as a sigma-algebra #

                      def MeasureTheory.cylinderEvents {ι : Type u_2} {X : ιType u_3} [m : (i : ι) → MeasurableSpace (X i)] (Δ : Set ι) :
                      MeasurableSpace ((i : ι) → X i)

                      The σ-algebra of cylinder events on Δ. It is the smallest σ-algebra making the projections on the i-th coordinate measurable for all i ∈ Δ.

                      Equations
                        Instances For
                          @[simp]
                          theorem MeasureTheory.cylinderEvents_univ {ι : Type u_2} {X : ιType u_3} [m : (i : ι) → MeasurableSpace (X i)] :
                          theorem MeasureTheory.cylinderEvents_mono {ι : Type u_2} {X : ιType u_3} [m : (i : ι) → MeasurableSpace (X i)] {Δ₁ Δ₂ : Set ι} (h : Δ₁ Δ₂) :
                          theorem MeasureTheory.cylinderEvents_le_pi {ι : Type u_2} {X : ιType u_3} [m : (i : ι) → MeasurableSpace (X i)] {Δ : Set ι} :
                          theorem MeasureTheory.measurable_cylinderEvents_iff {α : Type u_1} {ι : Type u_2} {X : ιType u_3} { : MeasurableSpace α} [m : (i : ι) → MeasurableSpace (X i)] {Δ : Set ι} {g : α(i : ι) → X i} :
                          Measurable g ∀ ⦃i : ι⦄, i ΔMeasurable fun (a : α) => g a i
                          theorem MeasureTheory.measurable_cylinderEvent_apply {ι : Type u_2} {X : ιType u_3} [m : (i : ι) → MeasurableSpace (X i)] {Δ : Set ι} {i : ι} (hi : i Δ) :
                          Measurable fun (f : (i : ι) → X i) => f i
                          theorem MeasureTheory.Measurable.eval_cylinderEvents {α : Type u_1} {ι : Type u_2} {X : ιType u_3} { : MeasurableSpace α} [m : (i : ι) → MeasurableSpace (X i)] {Δ : Set ι} {i : ι} {g : α(i : ι) → X i} (hi : i Δ) (hg : Measurable g) :
                          Measurable fun (a : α) => g a i
                          theorem MeasureTheory.measurable_cylinderEvents_lambda {α : Type u_1} {ι : Type u_2} {X : ιType u_3} { : MeasurableSpace α} [m : (i : ι) → MeasurableSpace (X i)] (f : α(i : ι) → X i) (hf : ∀ (i : ι), Measurable fun (a : α) => f a i) :
                          theorem MeasureTheory.measurable_update_cylinderEvents' {ι : Type u_2} {X : ιType u_3} [m : (i : ι) → MeasurableSpace (X i)] {Δ : Set ι} {i : ι} [DecidableEq ι] :
                          Measurable fun (p : ((i : ι) → X i) × X i) => Function.update p.1 i p.2

                          The function (f, x) ↦ update f a x : (Π a, X a) × X a → Π a, X a is measurable.

                          theorem MeasureTheory.measurable_uniqueElim_cylinderEvents {ι : Type u_2} {X : ιType u_3} [m : (i : ι) → MeasurableSpace (X i)] [Unique ι] :
                          theorem MeasureTheory.measurable_update_cylinderEvents {ι : Type u_2} {X : ιType u_3} [m : (i : ι) → MeasurableSpace (X i)] {Δ : Set ι} (f : (a : ι) → X a) {a : ι} [DecidableEq ι] :

                          The function update f a : X a → Π a, X a is always measurable. This doesn't require f to be measurable. This should not be confused with the statement that update f a x is measurable.

                          theorem MeasureTheory.measurable_update_cylinderEvents_left {ι : Type u_2} {X : ιType u_3} [m : (i : ι) → MeasurableSpace (X i)] {Δ : Set ι} {a : ι} [DecidableEq ι] {x : X a} :
                          Measurable fun (x_1 : (i : ι) → X i) => Function.update x_1 a x
                          theorem MeasureTheory.measurable_restrict_cylinderEvents {ι : Type u_2} {X : ιType u_3} [m : (i : ι) → MeasurableSpace (X i)] (Δ : Set ι) :