Documentation

Mathlib.MeasureTheory.Measure.Map

Pushforward of a measure #

In this file we define the pushforward MeasureTheory.Measure.map f μ of a measure μ along an almost everywhere measurable map f. If f is not a.e. measurable, then we define map f μ to be zero.

Main definitions #

Main statements #

noncomputable def MeasureTheory.Measure.liftLinear {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} [MeasurableSpace β] (f : OuterMeasure α →ₗ[ENNReal] OuterMeasure β) (hf : ∀ (μ : Measure α), inst✝ (f μ.toOuterMeasure).caratheodory) :

Lift a linear map between OuterMeasure spaces such that for each measure μ every measurable set is caratheodory-measurable w.r.t. f μ to a linear map between Measure spaces.

Equations
    Instances For
      theorem MeasureTheory.Measure.liftLinear_apply₀ {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : OuterMeasure α →ₗ[ENNReal] OuterMeasure β} (hf : ∀ (μ : Measure α), (f μ.toOuterMeasure).caratheodory) {s : Set β} (hs : NullMeasurableSet s ((liftLinear f hf) μ)) :
      ((liftLinear f hf) μ) s = (f μ.toOuterMeasure) s
      @[simp]
      theorem MeasureTheory.Measure.liftLinear_apply {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : OuterMeasure α →ₗ[ENNReal] OuterMeasure β} (hf : ∀ (μ : Measure α), (f μ.toOuterMeasure).caratheodory) {s : Set β} (hs : MeasurableSet s) :
      ((liftLinear f hf) μ) s = (f μ.toOuterMeasure) s
      theorem MeasureTheory.Measure.le_liftLinear_apply {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : OuterMeasure α →ₗ[ENNReal] OuterMeasure β} (hf : ∀ (μ : Measure α), (f μ.toOuterMeasure).caratheodory) (s : Set β) :
      (f μ.toOuterMeasure) s ((liftLinear f hf) μ) s
      noncomputable def MeasureTheory.Measure.mapₗ {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] (f : αβ) :

      The pushforward of a measure as a linear map. It is defined to be 0 if f is not a measurable function.

      Equations
        Instances For
          theorem MeasureTheory.Measure.mapₗ_congr {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f g : αβ} (hf : Measurable f) (hg : Measurable g) (h : f =ᶠ[ae μ] g) :
          (mapₗ f) μ = (mapₗ g) μ
          theorem MeasureTheory.Measure.map_def {α : Type u_4} {β : Type u_5} [MeasurableSpace α] [MeasurableSpace β] (f : αβ) (μ : Measure α) :
          map f μ = if hf : AEMeasurable f μ then (mapₗ (AEMeasurable.mk f hf)) μ else 0
          @[irreducible]
          noncomputable def MeasureTheory.Measure.map {α : Type u_4} {β : Type u_5} [MeasurableSpace α] [MeasurableSpace β] (f : αβ) (μ : Measure α) :

          The pushforward of a measure. It is defined to be 0 if f is not an almost everywhere measurable function.

          Equations
            Instances For
              theorem MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurable {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) :
              (mapₗ (AEMeasurable.mk f hf)) μ = map f μ
              theorem MeasureTheory.Measure.mapₗ_apply_of_measurable {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {f : αβ} (hf : Measurable f) (μ : Measure α) :
              (mapₗ f) μ = map f μ
              @[simp]
              theorem MeasureTheory.Measure.map_add {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} (μ ν : Measure α) {f : αβ} (hf : Measurable f) :
              map f (μ + ν) = map f μ + map f ν
              @[simp]
              theorem MeasureTheory.Measure.map_zero {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} (f : αβ) :
              map f 0 = 0
              @[simp]
              theorem MeasureTheory.Measure.map_of_not_aemeasurable {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {f : αβ} {μ : Measure α} (hf : ¬AEMeasurable f μ) :
              map f μ = 0
              theorem AEMeasurable.of_map_ne_zero {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {f : αβ} {μ : MeasureTheory.Measure α} (hf : MeasureTheory.Measure.map f μ 0) :
              theorem MeasureTheory.Measure.map_congr {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f g : αβ} (h : f =ᶠ[ae μ] g) :
              map f μ = map g μ
              @[simp]
              theorem MeasureTheory.Measure.map_smul {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {R : Type u_4} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] (c : R) (μ : Measure α) (f : αβ) :
              map f (c μ) = c map f μ
              theorem MeasureTheory.Measure.map_apply₀ {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) {s : Set β} (hs : NullMeasurableSet s (map f μ)) :
              (map f μ) s = μ (f ⁻¹' s)
              @[simp]
              theorem MeasureTheory.Measure.map_apply_of_aemeasurable {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) {s : Set β} (hs : MeasurableSet s) :
              (map f μ) s = μ (f ⁻¹' s)

              We can evaluate the pushforward on measurable sets. For non-measurable sets, see MeasureTheory.Measure.le_map_apply and MeasurableEquiv.map_apply.

              @[simp]
              theorem MeasureTheory.Measure.map_apply {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
              (map f μ) s = μ (f ⁻¹' s)
              theorem MeasureTheory.Measure.map_toOuterMeasure {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) :
              @[simp]
              theorem MeasureTheory.Measure.map_eq_zero_iff {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) :
              map f μ = 0 μ = 0
              @[simp]
              theorem MeasureTheory.Measure.mapₗ_eq_zero_iff {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : Measurable f) :
              (mapₗ f) μ = 0 μ = 0
              theorem MeasureTheory.Measure.measure_preimage_of_map_eq_self {α : Type u_1} { : MeasurableSpace α} {μ : Measure α} {f : αα} (hf : map f μ = μ) {s : Set α} (hs : NullMeasurableSet s μ) :
              μ (f ⁻¹' s) = μ s

              If map f μ = μ, then the measure of the preimage of any null measurable set s is equal to the measure of s. Note that this lemma does not assume (a.e.) measurability of f.

              theorem MeasureTheory.Measure.map_ne_zero_iff {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) :
              map f μ 0 μ 0
              theorem MeasureTheory.Measure.mapₗ_ne_zero_iff {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : Measurable f) :
              (mapₗ f) μ 0 μ 0
              @[simp]
              theorem MeasureTheory.Measure.map_id {α : Type u_1} { : MeasurableSpace α} {μ : Measure α} :
              map id μ = μ
              @[simp]
              theorem MeasureTheory.Measure.map_id' {α : Type u_1} { : MeasurableSpace α} {μ : Measure α} :
              map (fun (x : α) => x) μ = μ
              theorem MeasureTheory.Measure.map_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {μ : Measure α} {g : βγ} {f : αβ} (hg : Measurable g) (hf : Measurable f) :
              map g (map f μ) = map (g f) μ

              Mapping a measure twice is the same as mapping the measure with the composition. This version is for measurable functions. See map_map_of_aemeasurable when they are just ae measurable.

              theorem MeasureTheory.Measure.map_mono {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ ν : Measure α} {f : αβ} (h : μ ν) (hf : Measurable f) :
              map f μ map f ν
              theorem MeasureTheory.Measure.le_map_apply {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) (s : Set β) :
              μ (f ⁻¹' s) (map f μ) s

              Even if s is not measurable, we can bound map f μ s from below. See also MeasurableEquiv.map_apply.

              theorem MeasureTheory.Measure.le_map_apply_image {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) (s : Set α) :
              μ s (map f μ) (f '' s)
              theorem MeasureTheory.Measure.preimage_null_of_map_null {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) {s : Set β} (hs : (map f μ) s = 0) :
              μ (f ⁻¹' s) = 0

              Even if s is not measurable, map f μ s = 0 implies that μ (f ⁻¹' s) = 0.

              theorem MeasureTheory.Measure.tendsto_ae_map {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) :
              Filter.Tendsto f (ae μ) (ae (map f μ))
              theorem MeasureTheory.mem_ae_map_iff {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) {s : Set β} (hs : MeasurableSet s) :
              s ae (Measure.map f μ) f ⁻¹' s ae μ
              theorem MeasureTheory.mem_ae_of_mem_ae_map {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) {s : Set β} (hs : s ae (Measure.map f μ)) :
              f ⁻¹' s ae μ
              theorem MeasureTheory.ae_map_iff {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) {p : βProp} (hp : MeasurableSet {x : β | p x}) :
              (∀ᵐ (y : β) Measure.map f μ, p y) ∀ᵐ (x : α) μ, p (f x)
              theorem MeasureTheory.ae_of_ae_map {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {f : αβ} (hf : AEMeasurable f μ) {p : βProp} (h : ∀ᵐ (y : β) Measure.map f μ, p y) :
              ∀ᵐ (x : α) μ, p (f x)
              theorem MeasureTheory.ae_map_mem_range {α : Type u_1} {β : Type u_2} { : MeasurableSpace β} {m0 : MeasurableSpace α} (f : αβ) (hf : MeasurableSet (Set.range f)) (μ : Measure α) :
              theorem MeasurableEmbedding.map_apply {α : Type u_1} {β : Type u_2} {m0 : MeasurableSpace α} {m1 : MeasurableSpace β} {f : αβ} (hf : MeasurableEmbedding f) (μ : MeasureTheory.Measure α) (s : Set β) :

              Interactions of measurable equivalences and measures

              theorem MeasurableEquiv.map_apply {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} [MeasurableSpace β] {μ : MeasureTheory.Measure α} (f : α ≃ᵐ β) (s : Set β) :
              (MeasureTheory.Measure.map (⇑f) μ) s = μ (f ⁻¹' s)

              If we map a measure along a measurable equivalence, we can compute the measure on all sets (not just the measurable ones).

              @[simp]
              theorem MeasurableEquiv.map_symm_map {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} [MeasurableSpace β] {μ : MeasureTheory.Measure α} (e : α ≃ᵐ β) :
              @[simp]
              theorem MeasurableEquiv.map_map_symm {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} [MeasurableSpace β] {ν : MeasureTheory.Measure β} (e : α ≃ᵐ β) :