Operations on outer measures #
In this file we define algebraic operations (addition, scalar multiplication)
on the type of outer measures on a type.
We also show that outer measures on a type α
form a complete lattice.
References #
Tags #
outer measure
Equations
@[simp]
instance
MeasureTheory.OuterMeasure.instSMul
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
:
SMul R (OuterMeasure α)
Equations
@[simp]
theorem
MeasureTheory.OuterMeasure.coe_smul
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
(c : R)
(m : OuterMeasure α)
:
theorem
MeasureTheory.OuterMeasure.smul_apply
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
(c : R)
(m : OuterMeasure α)
(s : Set α)
:
instance
MeasureTheory.OuterMeasure.instSMulCommClass
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
{R' : Type u_4}
[SMul R' ENNReal]
[IsScalarTower R' ENNReal ENNReal]
[SMulCommClass R R' ENNReal]
:
SMulCommClass R R' (OuterMeasure α)
instance
MeasureTheory.OuterMeasure.instIsScalarTower
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
{R' : Type u_4}
[SMul R' ENNReal]
[IsScalarTower R' ENNReal ENNReal]
[SMul R R']
[IsScalarTower R R' ENNReal]
:
IsScalarTower R R' (OuterMeasure α)
instance
MeasureTheory.OuterMeasure.instIsCentralScalar
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
[SMul Rᵐᵒᵖ ENNReal]
[IsCentralScalar R ENNReal]
:
IsCentralScalar R (OuterMeasure α)
instance
MeasureTheory.OuterMeasure.instMulAction
{α : Type u_1}
{R : Type u_3}
[Monoid R]
[MulAction R ENNReal]
[IsScalarTower R ENNReal ENNReal]
:
MulAction R (OuterMeasure α)
Equations
Equations
@[simp]
theorem
MeasureTheory.OuterMeasure.coeFnAddMonoidHom_apply
{α : Type u_1}
(a✝ : OuterMeasure α)
(a : Set α)
:
instance
MeasureTheory.OuterMeasure.instDistribMulAction
{α : Type u_1}
{R : Type u_3}
[Monoid R]
[DistribMulAction R ENNReal]
[IsScalarTower R ENNReal ENNReal]
:
DistribMulAction R (OuterMeasure α)
Equations
instance
MeasureTheory.OuterMeasure.instModule
{α : Type u_1}
{R : Type u_3}
[Semiring R]
[Module R ENNReal]
[IsScalarTower R ENNReal ENNReal]
:
Module R (OuterMeasure α)
Equations
Equations
Equations
Equations
Equations
@[simp]
theorem
MeasureTheory.OuterMeasure.sSup_apply
{α : Type u_1}
(ms : Set (OuterMeasure α))
(s : Set α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.iSup_apply
{α : Type u_1}
{ι : Sort u_3}
(f : ι → OuterMeasure α)
(s : Set α)
:
theorem
MeasureTheory.OuterMeasure.coe_iSup
{α : Type u_1}
{ι : Sort u_3}
(f : ι → OuterMeasure α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.smul_iSup
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
{ι : Sort u_4}
(f : ι → OuterMeasure α)
(c : R)
:
theorem
MeasureTheory.OuterMeasure.mono''
{α : Type u_1}
{m₁ m₂ : OuterMeasure α}
{s₁ s₂ : Set α}
(hm : m₁ ≤ m₂)
(hs : s₁ ⊆ s₂)
:
The pushforward of m
along f
. The outer measure on s
is defined to be m (f ⁻¹' s)
.
Equations
Instances For
@[simp]
theorem
MeasureTheory.OuterMeasure.map_apply
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m : OuterMeasure α)
(s : Set β)
:
@[simp]
@[simp]
theorem
MeasureTheory.OuterMeasure.map_sup
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m m' : OuterMeasure α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.map_iSup
{α : Type u_1}
{β : Type u_3}
{ι : Sort u_4}
(f : α → β)
(m : ι → OuterMeasure α)
:
The dirac outer measure.
Equations
Instances For
The sum of an (arbitrary) collection of outer measures.
Equations
Instances For
@[simp]
theorem
MeasureTheory.OuterMeasure.sum_apply
{α : Type u_1}
{ι : Type u_3}
(f : ι → OuterMeasure α)
(s : Set α)
:
Pullback of an OuterMeasure
: comap f μ s = μ (f '' s)
.
Equations
Instances For
@[simp]
theorem
MeasureTheory.OuterMeasure.comap_apply
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m : OuterMeasure β)
(s : Set α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.comap_iSup
{α : Type u_1}
{β : Type u_3}
{ι : Sort u_4}
(f : α → β)
(m : ι → OuterMeasure β)
:
Restrict an OuterMeasure
to a set.
Equations
Instances For
@[simp]
theorem
MeasureTheory.OuterMeasure.restrict_apply
{α : Type u_1}
(s t : Set α)
(m : OuterMeasure α)
:
theorem
MeasureTheory.OuterMeasure.restrict_mono
{α : Type u_1}
{s t : Set α}
(h : s ⊆ t)
{m m' : OuterMeasure α}
(hm : m ≤ m')
:
@[simp]
@[simp]
@[simp]
theorem
MeasureTheory.OuterMeasure.restrict_iSup
{α : Type u_1}
{ι : Sort u_3}
(s : Set α)
(m : ι → OuterMeasure α)
:
theorem
MeasureTheory.OuterMeasure.map_comap
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m : OuterMeasure β)
:
theorem
MeasureTheory.OuterMeasure.map_comap_le
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m : OuterMeasure β)
:
theorem
MeasureTheory.OuterMeasure.restrict_le_self
{α : Type u_1}
(m : OuterMeasure α)
(s : Set α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.map_le_restrict_range
{α : Type u_1}
{β : Type u_3}
{ma : OuterMeasure α}
{mb : OuterMeasure β}
{f : α → β}
:
theorem
MeasureTheory.OuterMeasure.map_comap_of_surjective
{α : Type u_1}
{β : Type u_3}
{f : α → β}
(hf : Function.Surjective f)
(m : OuterMeasure β)
:
theorem
MeasureTheory.OuterMeasure.le_comap_map
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m : OuterMeasure α)
:
theorem
MeasureTheory.OuterMeasure.comap_map
{α : Type u_1}
{β : Type u_3}
{f : α → β}
(hf : Function.Injective f)
(m : OuterMeasure α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.map_top_of_surjective
{α : Type u_1}
{β : Type u_2}
(f : α → β)
(hf : Function.Surjective f)
: