Documentation

Mathlib.MeasureTheory.OuterMeasure.Operations

Operations on outer measures #

In this file we define algebraic operations (addition, scalar multiplication) on the type of outer measures on a type. We also show that outer measures on a type α form a complete lattice.

References #

Tags #

outer measure

@[simp]
theorem MeasureTheory.OuterMeasure.coe_zero {α : Type u_1} :
0 = 0
@[simp]
theorem MeasureTheory.OuterMeasure.coe_add {α : Type u_1} (m₁ m₂ : OuterMeasure α) :
⇑(m₁ + m₂) = m₁ + m₂
theorem MeasureTheory.OuterMeasure.add_apply {α : Type u_1} (m₁ m₂ : OuterMeasure α) (s : Set α) :
(m₁ + m₂) s = m₁ s + m₂ s
@[simp]
theorem MeasureTheory.OuterMeasure.coe_smul {α : Type u_1} {R : Type u_3} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] (c : R) (m : OuterMeasure α) :
⇑(c m) = c m
theorem MeasureTheory.OuterMeasure.smul_apply {α : Type u_1} {R : Type u_3} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] (c : R) (m : OuterMeasure α) (s : Set α) :
(c m) s = c m s

(⇑) as an AddMonoidHom.

Equations
    Instances For
      @[simp]
      theorem MeasureTheory.OuterMeasure.coeFnAddMonoidHom_apply {α : Type u_1} (a✝ : OuterMeasure α) (a : Set α) :
      coeFnAddMonoidHom a✝ a = a✝ a
      @[simp]
      @[simp]
      theorem MeasureTheory.OuterMeasure.sSup_apply {α : Type u_1} (ms : Set (OuterMeasure α)) (s : Set α) :
      (sSup ms) s = mms, m s
      @[simp]
      theorem MeasureTheory.OuterMeasure.iSup_apply {α : Type u_1} {ι : Sort u_3} (f : ιOuterMeasure α) (s : Set α) :
      (⨆ (i : ι), f i) s = ⨆ (i : ι), (f i) s
      theorem MeasureTheory.OuterMeasure.coe_iSup {α : Type u_1} {ι : Sort u_3} (f : ιOuterMeasure α) :
      (⨆ (i : ι), f i) = ⨆ (i : ι), (f i)
      @[simp]
      theorem MeasureTheory.OuterMeasure.sup_apply {α : Type u_1} (m₁ m₂ : OuterMeasure α) (s : Set α) :
      (m₁m₂) s = max (m₁ s) (m₂ s)
      theorem MeasureTheory.OuterMeasure.smul_iSup {α : Type u_1} {R : Type u_3} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] {ι : Sort u_4} (f : ιOuterMeasure α) (c : R) :
      c ⨆ (i : ι), f i = ⨆ (i : ι), c f i
      theorem MeasureTheory.OuterMeasure.mono'' {α : Type u_1} {m₁ m₂ : OuterMeasure α} {s₁ s₂ : Set α} (hm : m₁ m₂) (hs : s₁ s₂) :
      m₁ s₁ m₂ s₂
      def MeasureTheory.OuterMeasure.map {α : Type u_1} {β : Type u_3} (f : αβ) :

      The pushforward of m along f. The outer measure on s is defined to be m (f ⁻¹' s).

      Equations
        Instances For
          @[simp]
          theorem MeasureTheory.OuterMeasure.map_apply {α : Type u_1} {β : Type u_3} (f : αβ) (m : OuterMeasure α) (s : Set β) :
          ((map f) m) s = m (f ⁻¹' s)
          @[simp]
          theorem MeasureTheory.OuterMeasure.map_id {α : Type u_1} (m : OuterMeasure α) :
          (map id) m = m
          @[simp]
          theorem MeasureTheory.OuterMeasure.map_map {α : Type u_1} {β : Type u_3} {γ : Type u_4} (f : αβ) (g : βγ) (m : OuterMeasure α) :
          (map g) ((map f) m) = (map (g f)) m
          theorem MeasureTheory.OuterMeasure.map_mono {α : Type u_1} {β : Type u_3} (f : αβ) :
          Monotone (map f)
          @[simp]
          theorem MeasureTheory.OuterMeasure.map_sup {α : Type u_1} {β : Type u_3} (f : αβ) (m m' : OuterMeasure α) :
          (map f) (mm') = (map f) m(map f) m'
          @[simp]
          theorem MeasureTheory.OuterMeasure.map_iSup {α : Type u_1} {β : Type u_3} {ι : Sort u_4} (f : αβ) (m : ιOuterMeasure α) :
          (map f) (⨆ (i : ι), m i) = ⨆ (i : ι), (map f) (m i)

          The dirac outer measure.

          Equations
            Instances For
              @[simp]
              theorem MeasureTheory.OuterMeasure.dirac_apply {α : Type u_1} (a : α) (s : Set α) :
              (dirac a) s = s.indicator (fun (x : α) => 1) a
              def MeasureTheory.OuterMeasure.sum {α : Type u_1} {ι : Type u_3} (f : ιOuterMeasure α) :

              The sum of an (arbitrary) collection of outer measures.

              Equations
                Instances For
                  @[simp]
                  theorem MeasureTheory.OuterMeasure.sum_apply {α : Type u_1} {ι : Type u_3} (f : ιOuterMeasure α) (s : Set α) :
                  (sum f) s = ∑' (i : ι), (f i) s
                  theorem MeasureTheory.OuterMeasure.smul_dirac_apply {α : Type u_1} (a : ENNReal) (b : α) (s : Set α) :
                  (a dirac b) s = s.indicator (fun (x : α) => a) b
                  def MeasureTheory.OuterMeasure.comap {α : Type u_1} {β : Type u_3} (f : αβ) :

                  Pullback of an OuterMeasure: comap f μ s = μ (f '' s).

                  Equations
                    Instances For
                      @[simp]
                      theorem MeasureTheory.OuterMeasure.comap_apply {α : Type u_1} {β : Type u_3} (f : αβ) (m : OuterMeasure β) (s : Set α) :
                      ((comap f) m) s = m (f '' s)
                      theorem MeasureTheory.OuterMeasure.comap_mono {α : Type u_1} {β : Type u_3} (f : αβ) :
                      @[simp]
                      theorem MeasureTheory.OuterMeasure.comap_iSup {α : Type u_1} {β : Type u_3} {ι : Sort u_4} (f : αβ) (m : ιOuterMeasure β) :
                      (comap f) (⨆ (i : ι), m i) = ⨆ (i : ι), (comap f) (m i)

                      Restrict an OuterMeasure to a set.

                      Equations
                        Instances For
                          @[simp]
                          theorem MeasureTheory.OuterMeasure.restrict_apply {α : Type u_1} (s t : Set α) (m : OuterMeasure α) :
                          ((restrict s) m) t = m (t s)
                          theorem MeasureTheory.OuterMeasure.restrict_mono {α : Type u_1} {s t : Set α} (h : s t) {m m' : OuterMeasure α} (hm : m m') :
                          (restrict s) m (restrict t) m'
                          @[simp]
                          theorem MeasureTheory.OuterMeasure.restrict_iSup {α : Type u_1} {ι : Sort u_3} (s : Set α) (m : ιOuterMeasure α) :
                          (restrict s) (⨆ (i : ι), m i) = ⨆ (i : ι), (restrict s) (m i)
                          theorem MeasureTheory.OuterMeasure.map_comap {α : Type u_1} {β : Type u_3} (f : αβ) (m : OuterMeasure β) :
                          (map f) ((comap f) m) = (restrict (Set.range f)) m
                          theorem MeasureTheory.OuterMeasure.map_comap_le {α : Type u_1} {β : Type u_3} (f : αβ) (m : OuterMeasure β) :
                          (map f) ((comap f) m) m
                          @[simp]
                          theorem MeasureTheory.OuterMeasure.map_le_restrict_range {α : Type u_1} {β : Type u_3} {ma : OuterMeasure α} {mb : OuterMeasure β} {f : αβ} :
                          (map f) ma (restrict (Set.range f)) mb (map f) ma mb
                          theorem MeasureTheory.OuterMeasure.map_comap_of_surjective {α : Type u_1} {β : Type u_3} {f : αβ} (hf : Function.Surjective f) (m : OuterMeasure β) :
                          (map f) ((comap f) m) = m
                          theorem MeasureTheory.OuterMeasure.le_comap_map {α : Type u_1} {β : Type u_3} (f : αβ) (m : OuterMeasure α) :
                          m (comap f) ((map f) m)
                          theorem MeasureTheory.OuterMeasure.comap_map {α : Type u_1} {β : Type u_3} {f : αβ} (hf : Function.Injective f) (m : OuterMeasure α) :
                          (comap f) ((map f) m) = m
                          @[simp]
                          theorem MeasureTheory.OuterMeasure.top_apply {α : Type u_1} {s : Set α} (h : s.Nonempty) :
                          theorem MeasureTheory.OuterMeasure.top_apply' {α : Type u_1} (s : Set α) :
                          s = ⨅ (_ : s = ), 0
                          @[simp]
                          theorem MeasureTheory.OuterMeasure.comap_top {α : Type u_1} {β : Type u_2} (f : αβ) :
                          theorem MeasureTheory.OuterMeasure.map_top {α : Type u_1} {β : Type u_2} (f : αβ) :
                          @[simp]
                          theorem MeasureTheory.OuterMeasure.map_top_of_surjective {α : Type u_1} {β : Type u_2} (f : αβ) (hf : Function.Surjective f) :
                          (map f) =